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However, current biodiversity monitoring processes are often time-consuming,
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complex and irreproducible. Moreover, the quality and types of biodiversity data

Handling Editor: Marc W. Cadotte are diverse, which challenges their integration and impedes effective monitoring.
A major step to overcome such challenges would be the availability of standardized
species occurrence data. However, challenges arise in aggregating and integrating
these heterogeneous data with environmental and landscape data.

2. By creating standardized biodiversity data cubes and automated workflows for
post-processing, we envision that (1) information from complex datasets will be
available in a known format to efficiently communicate biodiversity variables to
policymakers; (2) the adoption of repeatable Open Data workflows will make
biodiversity data more accessible, efficient and cost-effective; and (3) cloud
computing will make it easier to analyse large datasets, benefit from a broader
range of models, share resources and work together on biodiversity projects.

3. This revolution in biodiversity monitoring will rely on community collaboration.
By bridging the gap between policymakers' needs, bioinformation specialists'
skills and data collectors' motivations, biodiversity monitoring can become a more

inclusive and community-driven effort. As such, we advocate for the development
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1 | INTRODUCTION

Effective biodiversity management and policy decisions depend
on timely, accurate and reliable scientific data, including informa-
tion on current status, trends and threats. Moreover, the ability
to predict future changes in biodiversity through modelling is
critical for proactive policymaking (Dietze et al., 2018; Mclntire
et al., 2022). This information then needs to be communicated
in actionable and understandable formats, with measures of un-
certainty and outcomes from a range of possible scenarios. Many
global policy initiatives aim to improve biodiversity monitoring,
such as the Kunming-Montreal Global Biodiversity Framework.
The Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services (IPBES) has worked with hundreds of
experts globally to produce global, regional and thematic assess-
ments on the state of biodiversity. All of these efforts have the
same message: we urgently need access to up-to-date data and
information to be able to measure biodiversity status and trends
(Gadelha et al., 2021; Geijzendorffer et al., 2016; IPBES, 2019).
Nonetheless, and despite repeated calls for improved biodiversity
monitoring (e.g. (Niemel3, 2000)), the steps of data cleaning, ag-
gregation and analysis are time-consuming, convoluted, laborious
and often irreproducible.

Biodiversity data collectors are diverse, including amateur nat-
uralists, conservation groups, non-governmental organizations,
pest controllers, land managers, farmers, ecologists, researchers,
planners, harvesters of natural resources, museums, herbaria and
others. They are the creators, funders and users of biodiversity
data, such that they form a network with a stake in this knowledge
and a long-term interest in biodiversity. Also, most datasets do not
span the time it takes for nature to react to environmental changes
(Estes et al., 2018). These issues create an integrative challenge be-
cause the collected data are highly heterogeneous, with variations
in resolution, survey effort, species detectability, taxonomic focus
and geographic and temporal scope often influenced by geograph-
ical, environmental and socio-political contexts. Further challenges
include evaluating data completeness, quantifying sampling effort
and assessing data quality (e.g. spatial/temporal uncertainty, spe-
cies misidentification) and the complexity of conducting ground
surveys, which are time-consuming and often hindered by the same

of tools and workflows in close consultation with stakeholders to enhance the
impact and use of biodiversity information.

4. Practical implication. The proposed approach faces challenges in maintaining
software, data standards and addressing biodiversity data complexity. However,
leveraging existing infrastructures like GBIF and Copernicus, and building on the
knowledge from GEO and GEO BON offers a feasible path.

analysis-ready datasets, biodiversity management, community collaboration, policymaking,
spatial and temporal resolution, species occurrence, taxonomic aggregation, trends

geographical, environmental and socio-political contexts that influ-
ence data variability.

Biodiversity data are accumulating at an unprecedented pace
from a diverse range of sources (Heberling et al., 2021). New tech-
nologies are increasingly being deployed, such as automatic sen-
sors, eDNA, camera traps, satellite tracking and data mining from
scholarly publishing. These techniques generate diverse data and
data formats. Maximizing the utility of all this information requires
integrating data across sources, including remote and in situ en-
vironmental data layers. To process these data, we need to esca-
late the development of tools and infrastructure for meaningful
interpretations and deeper understanding. Too often, the results
of biodiversity monitoring are incomparable or indistinguishable
between time periods and regions (Gadelha et al., 2021; Valdez
et al., 2023). There is also a considerable lag between the collec-
tion of biodiversity data and the conversion of those data into ac-
tionable knowledge (Dove et al., 2023; Groom et al., 2019; Gaiji
et al., 2013).

Effective policy responses depend on swift and accurate bio-
diversity information. For instance, swift knowledge dissemination
has proven important in addressing biodiversity-related disease
outbreaks like Zika and Nipah viruses, aiding policymakers (Daszak
et al.,, 2013; Keesing & Ostfeld, 2021). Similarly, reducing response
time to biological invasions is vital for successful management
(Kaiser & Burnett, 2010). Therefore, it is necessary that we develop
a better and more efficient data landscape to enhance informed
policymaking.

We envisage the rapid transformation of raw occurrence data
into meaningful indicators, assessments and visualizations of
biodiversity status and change. Moreover, this can be achieved
with existing technology and frameworks (Dietze et al., 2018).
Indeed, this ambition forms the basis for the EU-funded Building
Biodiversity Blocks for Policy (B-Cubed) project. First, by using
the Essential Biodiversity Variable (EBV) framework to develop
analysis-ready datasets and integrating tools specifically designed
for their use, we aim to lower existing barriers to extracting knowl-
edge from raw data (Chatenoux et al., 2021; Giuliani et al., 2017).
By chaining these tools together into automated workflows, we will
provide regular outputs that are reproducible, open and useful.
Second, we can take advantage of the flexibility, scalability and
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collaborative nature of cloud computing to make advanced data
science techniques available to all. And finally, by developing the
capabilities of the tools in close collaboration with stakeholders,
we will greatly increase impact and expand the use of biodiversity
information, smoothing the flow of information from primary data
to decision-making (Figure 1).

Our aim here was to explain to a broad audience the project's
aspirations. Ultimately, we want to contribute to the democratiza-
tion of biodiversity data products globally, by building a community
of decision makers, data scientists and software developers. We
focused on species occurrence data to create adaptable workflows
that not only lower the data processing, analytical and reporting bur-
den of monitoring biodiversity for national, regional and global pol-
icy but also meet the changing needs of policy and assist continuous

advances in data technologies and methods.

2 | BUILDING BLOCKS FOR
BIODIVERSITY DATA

2.1 | Data cubes for assessing biodiversity change

To effectively convey global biodiversity status and trends, we need
standardized variables that are clear to policymakers, reflect changes,
include uncertainty estimates and encompass biodiversity's key
aspects. The EBV framework allows for the communication of these
parameters from complex datasets to decision-makers, preserving
the data's detail and origin (Kissling et al., 2018; Pereira et al., 2013).

The most readily available data type for biodiversity are spe-
cies occurrences (Gaiji et al., 2013). Occurrence records can be
defined as objects in a three-dimensional space where the dimen-
sions are taxonomic [what was observed?], temporal [when was
it observed?] and spatial [where was it observed?]. For species
distribution analysis, it has been proposed to create aggregated
‘data cubes’ of occurrence data (Kissling et al., 2018) for a range
of analyses to indicate status and trends, and predictively model
the future of biodiversity under different scenarios. Data cubes
are not a new concept but were proposed to facilitate common
operations on large datasets and to improve interoperability
(Datta & Thomas, 1999). They have been adopted within the Earth
Observation research community for data provision and analysis
due to their ability to streamline spatial and temporal analysis
workflows (Ferreira et al., 2020).

Data cubes are a powerful tool for organizing and analysing bio-
diversity data. These cubes are multidimensional structures where
each dimension represents a variable of interest, such as species
taxonomy, geographic location or time. Each ‘cell’ within the cube
contains values or measures relevant to these dimensions. For in-
stance, a biodiversity data cube could capture the presence of a spe-
cies (taxonomy) at specific coordinates (space) and times (temporal
dimension). This structure allows researchers to aggregate, compare
and visualize data across multiple dimensions in a standardized and
scalable way, facilitating communication for decision-making.
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Data that conform to a single grid system are comparable, in-
tegratable and modelable. However, raw biodiversity observations
rarely fit to the same geographic grid systems as environmental
and landscape data (cf. data from remote sensing). A common
solution is to reduce the resolution to a coarse grid. Such data
are known as occupancy data (noting that technically occupancy
depends on both the presence and detectability of an organism
(MacKenzie et al., 2002)). Coarsening observational data inevitably
leads to a loss of high-quality, fine-resolution data. It also intro-
duces a bias as cells with a high population density are weighted
equally to cells where the taxon is rare, resulting in a correspond-
ing loss of sensitivity and resolution for indicators and models.
To address this, algorithms can be used to convert raw biodiver-
sity observations to a single high-resolution grid system (Groom
et al., 2018; Oldoni et al., 2020). In doing so, we retain more of the
available information.

Once created, a biodiversity occupancy cube can be further ag-
gregated by any of its dimensions. The taxonomic dimension is hi-
erarchical, allowing aggregation by higher taxonomy. For example,
occurrence records from several species can be pooled together so
as to perform genus-level analyses. In the biological processes that
concern us, such as species distribution, temporal uncertainty is typ-
ically lower than the rate of change; therefore, a year is often a suit-
able aggregation span for many applications. These data cubes can
be used to model future species distributions, generate indicators
of biodiversity change, evaluate the status of biodiversity, improve
monitoring and inform policy.

Cube generation is computationally demanding, but once cre-
ated, they can be made individually referenceable with a digital
object identifier. Such cubes can be bespoke, but can also follow
a common parameterization so that they are comparable between
regions. While many species distribution modelling and indicator
workflows organize data into structures resembling data cubes,
often through spatial and temporal binning, data cubes make this
process explicit. This ensures that data can be consistently aggre-
gated and analysed across workflows while maintaining clear meta-

data about the sources and transformations applied.

2.2 | Workflows

At their simplest, workflows involve collecting data on species
occurrences and publishing them to platforms like GBIF, where the
data are standardized to a common format and taxonomy. These
standardized data are then harmonized onto a uniform spatial grid
and combined with environmental variables. From this foundation,
outputs can be produced such as maps, time series, predictive
models and reports.

The EBV framework provides a strong foundation for biodiver-
sity analysis and policy. However, it does not define the necessary
computational and infrastructural requirements to achieve desired
outcomes. For effective biodiversity information generation, we
need repeatable Open Data workflows that transform primary data
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Linking Biodiversity to Policy

Scientists, policymakers, conservationist, amateur naturalists and land
managers are all important elements of a collaborative community
engaged in the collection, analysis and information that make up the
biodiversity monitoring cycle. With so many interested people involved,
each with their own needs, community-led development of tools and
workflows designed and improved in collaboration is essential.

Essential Biodiversity Variables provide a standardized
framework for measuring and communicating key aspects of
biodiversity change, making complex datasets accessible
and actionable for policymakers. Alongside, international
standards such as the FAIR Data Principles supporting
informed decision-making and collaborative biodiversity
monitoring efforts.

Analysis ready data as aggregated biodiversity
occurrence cubes help us integrate biodiversity
data with other environmental data, enabling
modeling and trend analysis. This makes the most
of the extreme heterogeneity of biodiversity
collected with a multitude of methods.

Cloud Computing in biodiversity monitoring brings the benefits of
scalability, cost reduction, and collaboration. Using it in conjunction with
analysis-ready datasets and repeatable workflows it will enable the
regular transformation of raw biodiversity data into actionable indicators
and assessments.
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FIGURE 1 The highly diverse biodiversity community is actively involved in every stage of monitoring and shaping policies related

to biodiversity. Primary species observations are transformed to indicators through intermediate Data cubes following the Essential
Biodiversity Variables framework. Each cube is independently referenceable and has the dimensions of taxonomy, time, and space. Using
automated workflows, primary data are aggregated to a gridded occupancy cube and models are used to evaluate trends, project data and
predict future scenarios. All indicators are created with measurements/indications of their uncertainty and all have sufficient metadata on
provenance to be able to reproduce the result. The whole process occurs within a cloud-based architecture using internationally recognized

standards. All components are open source, modular and configurable.

into clear, informative, and reproducible measures of biodiversity
(Boyd et al., 2023; Groom et al., 2019; Seebens et al., 2020). To
ensure transparency, reusability and sustainability, all inputs and
outputs must adhere to the FAIR Data Principles. Embracing an
Open Data—Open Source approach will allow the community to
continuously scrutinize and repurpose workflows, and importantly
enhance users' autonomy for updating and expanding datasets
(Sica et al., 2024).

Biodiversity monitoring requires data management resources
and informatics skills that can be costly—potentially a bar-
rier to implementation for low- and middle-income countries.
Standardized workflows that combine established data process-
ing methods will allow anyone to adapt and run them for their
country or region, making biodiversity assessment more consis-
tent, accessible and cost-effective. This approach will lead to im-
proved indicators of biodiversity change, reduced infrastructure
costs and seamless integration of biodiversity data with other
environmental factors.

Environmental data, such as those that are remotely sensed,
are important covariates to occupancy data. They can be used, for
example, to interpolate scattered field observations of biodiversity
data (Cavender-Bares et al., 2022; Rocchini et al., 2022). The ready
availability and seamless interoperability of data cubes encom-
passing both environmental and biodiversity variables significantly

streamline the analysis process.

2.3 | Cloud computing

There is a growing need to move environmental data into cloud
services where users can benefit from the following: (1) reduced
costs; (2) outsourced maintenance, disaster recovery, security
and loss prevention; and (3) a collaborative work environment and
scalability (Meeus et al., 2022). The scalability of cloud computing
reduces the computational barriers for analysing big data meaning
that a wider array of models can be used, the spatial and temporal
resolution can be increased and it is more adaptable to the user's
needs. Furthermore, cloud computing can make collaboration
possible that is otherwise difficult in siloed infrastructures. As such,
this aligns with the strategic plan of GBIF, the single largest source
of biodiversity data worldwide. In this plan they aim to ‘include more
and varied types of data and improved informatics services in order
to supply the biodiversity information that global research and policy
require’ (GBIF Secretariat, 2021).

2.4 | Connecting data to decision

Groom et al. (2019) advocate for biodiversity monitoring to be seen
more as a community effort, with data cycles that motivate and
reinforce that community. All stakeholders should be involved in
the whole cycle and have tangible benefits from their contribution;
otherwise, it is unreasonable to expect these disparate groups to
cooperate towards a common vision. By (co-)developing data cubes
and their associated workflows as tools to monitor trends and status
of biodiversity, we can expect to close the gap between policy
makers' needs, bioinformation specialists' skills and data collectors'
motivations. Integration of proven but disconnected methods in
biodiversity informatics and the simplification of access to, and
deployment of, automated workflows on demand and automatically
on a regular basis is timely and has been encouraged by many
proponents (Jetz et al., 2019; Kissling et al., 2018).

To illustrate how our workflows and data cubes address real-
world biodiversity challenges, we refer to the ‘indicators’ workflow
developed by the TrlAS Project (https://github.com/trias-project/
indicators). This workflow demonstrates how biodiversity indicators,
such as trends in the introduction of non-native species in Belgium,
can be calculated from occurrence data (Figure 2). By integrating
raw species occurrence records into a standardized pipeline, it en-
ables the production of actionable insights, including trend analyses
and spatial visualizations, that directly inform national biodiversity
strategies. Standardization simplifies data integration from multiple
sources, ensures consistency across datasets and enhances inter-
pretability for policymakers, making these outputs highly applicable
to policy and management decisions.

In the TrlAS example, species occurrence data from more than
3000 datasets were aggregated and filtered to calculate temporal
trends in the introduction of non-native species in Belgium. These
aggregated trends were visualized and used to inform regional
and national state of nature reports (e.g. Adriaens et al., 2020;
Szczodry et al., 2020) and to develop policies for the national bio-
diversity strategy (Belgian National Focal Point to the Convention
on Biological Diversity (Ed.), 2013). At the species level, temporal
trends in high-impact species are informing risk management strat-
egies in the Belgian regions, including specific approaches to reduce
invasion impacts in protected areas in response to European reg-
ulation (D'hondt et al., 2022; Petersen et al., 2024). As all of these
tools are open source, in collaboration with the responsible agency, a
dashboard (https://radius-project.shinyapps.io/dashboard/) was set
up which provides up-to-date information on invasive alien species
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Impatiens capensis Myriophyllum heterophyllum
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FIGURE 2 Anexample of a trend indicator for the occupancy of three non-native species in Belgium from 1950 to 2022 based upon

a datacube built on 3124 datasets mobilized from GBIF (GBIF.Org User, 2025). Pinus sylvatica may be native to Belgium, but it has spread
as a result of planting and the abandonment of marginal lands. The graphs show a modelled trend in the number of observations and the
occupancy in Belgium. Black dots represent the number of occupied 1 km? cells, colours indicate emerging character of the species in any
given year based on first and second derivatives of a fitted generalized additive model (GAM).

occupancy in protected areas such as NATURA2000 areas or nature
reserves and, combined with spatial information on the occurrence
of specific protected habitats, on the level of occupancy of these
species in protected habitats.

There is a risk of oversimplification, potentially leading to the
loss of important details. In a way of mitigation, rich metadata are
associated with the data cube to facilitate interpretation, and exper-
tise is necessary in the biology of organisms and the data collection
processes to interpret results and to understand what steps should
be taken to confirm important results.

Another need is the assessment of the most recent biodiver-
sity datasets that can provide timely information on the increasing
number of species required by EU regulations. On a recurring basis,
Member States could benefit significantly from the integration of
open datasets and the implementation of automated workflows at

species level.

3 | DISCUSSION

Addressing and effectively managing the current biodiversity crisis
requires that practitioners and policymakers have access to analysis-
ready biodiversity data products that conform to open data principles
and best practice information standards. B-Cubed, as a Horizon
Europe-funded project, is developing such data products in the
form of biodiversity data cubes, along with repeatable workflows

that sufficiently document the process of cube creation. This allows
comparability of analyses over space and time that can be rerun to
react to changing needs and conditions. Such workflows also enable
non-specialist practitioners to develop bespoke data products,
should the provided data products not be fit for their purpose. By
leveraging both the large amounts of biodiversity and environmental
data that are being collected, aggregated and made available, along
with advancements and availability in cloud-computing technology,
B-Cubed aligns with the principles outlined in the Bari Manifesto for
better data management and accessibility (Hardisty et al., 2019).

Despite the strengths and long-term benefits of the outlined vi-
sion, we recognize that implementing this vision requires overcom-
ing multiple challenges. Automated workflows can save time and
reduce errors, but they may require training or technical support
for effective use. Moreover, input and output files need to follow
established data standards and vocabularies (Hardisty et al., 2019;
Pereira et al., 2022). Additionally, ensuring comparability in national
and regional reports with previous years' data is crucial. This require-
ment can limit the adoption of new methods and workflows unless
harmonization efforts are initiated early in the process.

In a cloud computing environment, it is an advantage if processes
can be parallelized, though not all algorithms allow this approach
(Cristobal-Salas et al., 2019).

It can be easy to treat biodiversity data as simply ones and zeros
and then apply those data to mathematical and statistical models
to produce an output. However, one needs to remember that these
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data represent complex and emergent biological entities. As such,
processing biodiversity data involves domain-specific issues like dif-
ferent taxon concepts, data source diversity, unstructured error re-
porting, and the large range of biological traits. However, leveraging
existing infrastructure like GBIF, which offers a common taxonomic
backbone and data standards, makes the proposed approach viable.
It also benefits from the expertise of communities like the Group on
Earth Observation (GEO), GEO Biodiversity Observation Network
(GEO BON) and regional bodies like the European Biodiversity
Observation Network (EU BON).

Criteria for the success of B-Cubed will be measured by the
adoption of common tools, services and products by decision mak-
ers and the data scientists who work with them. Sustainability is also
a key aspect, which is why it is important to integrate environmen-
tal infrastructures globally. By making biodiversity monitoring more
accessible to stakeholders, we will support global assessments of
biodiversity and help countries deliver on policy targets. We see B-
Cubed as a stepping stone to this vision. If you are working towards
a similar vision, or perhaps feel we could support your goals in biodi-

versity monitoring, please get in touch.
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