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Introduction

Abstract

Insects represent nearly half of all known multicellular species, but knowledge
about them lags behind for most vertebrate species. In part for this reason, they
are often neglected in biodiversity conservation policies and practice. Computer
vision tools, such as insect camera traps, for automated monitoring have the
potential to revolutionize insect study and conservation. To further advance
insect camera trapping and the analysis of their image data, effective image pro-
cessing pipelines are needed. In this paper, we present a flexible and fast proces-
sing pipeline designed to analyse these recordings by detecting, tracking and
classifying nocturnal insects in a broad taxonomy of 15 insect classes and reso-
lution of individual moth species. A classifier with anomaly detection is pro-
posed to filter dark, blurred or partially visible insects that will be uncertain to
classify correctly. A simple track-by-detection algorithm is proposed to track
classified insects by incorporating feature embeddings, distance and area cost.
We evaluated the computational speed and power performance of different
edge computing devices (Raspberry Pi’s and NVIDIA Jetson Nano) and com-
pared various time-lapse (TL) strategies with tracking. The minimum difference
of detections was found for 2-min TL intervals compared to tracking with 0.5
frames per second; however, for insects with fewer than one detection per
night, the Pearson correlation decreases. Shifting from tracking to TL monitor-
ing would reduce the number of recorded images and would allow for edge
processing of images in real-time on a camera trap with Raspberry Pi. The Jet-
son Nano is the most energy-efficient solution, capable of real-time tracking at
nearly 0.5 fps. Our processing pipeline was applied to more than 5.7 million
images recorded at 0.5 frames per second from 12 light camera traps during
two full seasons located in diverse habitats, including bogs, heaths and forests.
Our results thus show the scalability of insect camera traps.

in the context of global change (Wagner et al, 2021).
Conventional insect trapping techniques, as outlined by

Insects make up the most diverse group of animals with
more than a million described species, and insects consti-
tute approximately half of total animal biomass (Bar-On
et al.,, 2018). Insects play vital roles in terrestrial ecosys-
tems and have significant economic importance as, for
example, agricultural pests, natural enemies and pollina-
tors. Changes in insect abundance have cascading effects
through the food web, suggesting that improved monitor-
ing efficiency is particularly relevant for this animal group

Montgomery et al. (2021), are labour intensive, and in
many cases, insects are sacrificed in the process. Manual
enumeration and taxonomic identification by human
experts are also very labour-intensive and often require
highly specialized knowledge.

Data on insect populations are notably sparse due to
limited resources, the vast number of species and the high
level of expertise required to study them (Didham
et al, 2020). The advent of automated monitoring
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Processing of Images from Insect Camera Traps

technologies, employing computer vision and deep learn-
ing, has brought about a revolution in insect studies (Bes-
son et al., 2022; Lima et al., 2020; van Klink et al., 2022)
in both real-time scenarios (Bjerge, Mann, & Heye, 2021;
Ratnayake et al., 2021; Sittinger et al., 2024) and offline
analysis of images from time-lapse (TL) cameras (Bjerge,
Alison, et al., 2023; Geissmann et al., 2022). Automated
insect camera traps, coupled with data-analysing algo-
rithms rooted in computer vision and deep learning,
could therefore serve as invaluable tools to monitor insect
trends and elucidate the underlying drivers (Barlow &
O’Neill, 2020; Haye et al., 2021). Animal species recogni-
tion from camera traps is a well-established problem
within the computer vision community (Oliver
et al, 2023), with common challenges including poor
lighting, occlusion, camouflage and blur (Beery
et al, 2018). However, working with insects presents
unique challenges that are not encountered with tradi-
tional camera trap systems designed for large animals. For
example, while traditional camera trap images might
occasionally capture a target species, nearly every image
from an insect camera trap contains insects. This is espe-
cially true during nights of high activity, where hundreds
of nocturnal insects can be visible in a single image.

Nocturnal insects are difficult to monitor; however,
camera-based light traps (Bjerge, Nielsen, et al., 2021;
Korsch et al., 2021) and the advancement of standardized
hardware and frameworks for image-based monitoring of
nocturnal insects (Roy et al., 2024) pave the way for
increased temporal coverage and resolution in insect
monitoring. Automated monitoring of moths has been
evaluated by comparing traditional lethal methods with
light-based camera traps (Holzhauer et al., 2025; Mdglich
et al., 2023). This first proof of concept has demonstrated
that automated moth traps capture phenological patterns
just as well as conventional, lethal traps (Holzhauer
et al., 2025).

Camera trapping methods based on TL recordings can
generate millions of images, especially when using sam-
pling intervals of seconds or a few minutes. However, as
these tools become more widely applied, they are likely to
generate large amounts (terabytes to petabytes) of image
data per year and storing all the data may not be feasible
or even sensible. It is possible that a reduced frame rate
will yield comparable results, but rare taxa are less likely
to be detected as the frame rate is reduced. An alternative
approach is to implement edge computing, where image
processing is performed directly on the recording camera
device. In this setup, only the processed data and, option-
ally, a subset of raw images are stored. Edge computing
facilitates real-time monitoring, allowing daily uploads of
insect taxa abundance statistics when internet access is
available. However, edge computing requires significant
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computational resources, which increase the cost of the

camera system.

In this work, we propose a flexible and fast processing
pipeline to analyse image recordings from insect camera
traps by detecting, tracking and classifying nocturnal
insects at the broad taxonomic ranks such as order, sub-
order, family and at the species level for moths. We dem-
onstrate the efficacy of the proposed pipeline by
evaluating its speed performance on three different edge
computing devices, including Raspberry Pi 4, Raspberry
Pi 5 and NVIDIA Jetson Nano. Our pipeline supports
multiple TL strategies and real-time tracking. These strat-
egies are evaluated to ensure they provide comparable
measurements of activity dynamics over time. We apply
the pipeline to image data recorded with 12 insect camera
traps fitted with UV light to attract nocturnal insects
(Bjerge, Nielsen, et al., 2021). The dataset includes record-
ings from > 3000 nights across 2 years. The statistics of
recorded images, detected and tracked insects from this
study are presented in this paper.

In summary, our objectives for this study are the
following:

e Propose a deep learning pipeline to measure temporal
abundance for taxa of nocturnal insects.

e Classify all images of insects into broad taxonomic
groups with anomaly detection and images of Lepidop-
tera to species.

e Evaluate four different computing platforms including
edge devices with respect to processing time and
energy consumption.

e Compare TL sampling with real-time tracking of indi-
vidual insects.

e Connect the pipeline to insect ecology and conserva-
tion by demonstrating the proposed image processing
pipeline in field-collected data.

Materials and Methods

Data collection

Automated light traps with cameras were constructed
with standard components consisting of a Raspberry Pi 4,
Brio Camera (Logitech, 2021), power controller, UV light
and light ring as proposed by Bjerge, Nielsen,
et al. (2021). A solid-state drive (500 GB) was connected
to the Raspberry Pi to store the captured images. The
mechanical design was improved, and the background
light table was replaced with a plastic plate covered with
a white fabric shown in Figure 1.

Twelve camera traps were placed at three different loca-
tions in Denmark during the 2022 and 2023 summer sea-
sons. These locations included a variety of habitats, such
as bogs, heaths and forests. Three nature areas managed
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Figure 1. Camera trap with UV light to attract and monitor nocturnal
insects.

by the Aage V. Jensen Naturfond were selected for sam-
pling: Lille Vildmose, Ovstrup Hede and Seholt Storskov
(https://www.avjf.dk/avjnf/naturomraader/). Within each
area, four traps were deployed, spaced 1-10km apart.
Four of the traps were powered by solar panels, charge
regulators and batteries (12 V); all other traps were sup-
plied through mains power (220V). The camera traps
were activated in the period from 11 p.m. to 3 a.m. each
night. We restricted sampling to this period each night to
ensure that power from the battery and solar panel was
available throughout the entire insect activity season in
Denmark from April to the end of October, that is, even
when the solar angle is fairly low at the sites. We turned
off the traps at 3a.m. to ensure that insects would have
sufficient time to leave the trap before insectivorous birds
would become active in the morning.

A motion programme (Motion, 2021) running on the
Raspberry Pi 4 was installed to capture a sequence of
images whenever a movement was detected in the camera
view. The maximum frame rate was limited to 0.5 fps.
On warm summer nights with a high level of insect activ-
ity, more than 6000 images were captured per night. In
2022 and 2023 more than 5 million images with a pixel
size of 3840 x 2160 (11 pixels/mm) were recorded. As a
supplement to the motion recorded images, a TL
approach was used to save an image every 10 min inde-
pendent of insect activity.

Processing of Images from Insect Camera Traps

Processing pipeline

For insect monitoring, Multiple Object Tracking (MOT)
would be relevant, especially for fast video recording.
MOT uses Computer Vision to estimate trajectories for
objects of interest presented in a sequence of images,
especially videos with high frame rates. Most MOT
methods require annotated tracking datasets, which can
be challenging to create.

We aimed to create a flexible pipeline that can be used
for both processing with and without tracking depending
on the chosen TL sampling interval. We chose the track-
by-detection (TBD) approach since it is flexible and can
be realized without any annotated tracking dataset. The
proposed processing pipeline is shown in Figure 2. The
pipeline is designed to prioritize flexibility above
efficiency.

The first step in our pipeline is to detect insects. To
perform this step, we first annotated a training dataset of
insects in the images collected from our camera traps. We
then trained a model to detect insects of interest while
ignoring dirt and small or blurry insects. In the future,
this step could be replaced with a more generic detector
trained on images from various backgrounds with insects.

The second and third steps classify the detected insects
using two separate models. One classifies all insects into
broad taxonomic groups, and the other classifies moths
to the species level. The two classification models can be
executed in parallel. The broad taxon classifier is trained
on the camera trap data. Here, we have sorted the insects
into order, suborders and families based on the content
of the recorded images. We have incorporated the anom-
aly detector presented by (Bjerge, Geissmann, et al., 2023)
into the classifier to filter insects which have class scores
that are outside the distribution of the created dataset of
broad taxonomic groups. These outliers could be partly
visible or blurry insects, or they could be representatives
of unseen classes of insects or other animals.

The third step implements the moth species classifier
trained on external data from the Global Biodiversity
Information Facility (GBIF) with all moth species known
to be present in the region where the trap is located.
Here, we have used the moth species classifier published
by Rolnick et al. (2023) trained for moth species found in
Denmark and the UK.

The output from the insect detector, broad taxon clas-
sifier and moth species classifier is a list of insect detec-
tions with additional information about the trap, image,
bounding box coordinates, confidence, anomaly, date,
time and embedding features.

The fourth tracking step is based on TBD by using the
bounding boxes and embedding features to create a final
list of insect tracks with information about predicted
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Figure 2. Processing pipeline to localize, classify and track insects from motion or time-lapse recorded camera trap images. In Steps 1 and 2, the
detected insects are classified to the level of broad taxonomic groups parallel with moth species classification. Classification results are
concatenated ‘+' to provide insect information for the final tracking step performed on motion-triggered images recorded with a high sampling

rate of 0.5 fps.

insect taxon, species, confidence, size, date, arrival time
and duration seen by the camera.

The source code for the pipeline is available on Github
(https://github.com/kimbjerge/MCC24-trap). Each step in
the pipeline is described below, with a focus on the con-
tributions for anomaly detection and the simple flexible
tracking of insects.

Insect detection and localization

Deep learning image object detection methods rely solely
on spatial image information to extract features and
detect regions of objects in the image. You-only-look-
once (Redmon et al., 2016) (YOLO) is a one-stage object
detector and one of the fastest object detectors, which is
important for processing millions of images or deploying
on edge computers. In our work, YOLOv5 (Glenn
Jocher, 2020) with CSPDarknet53 as the backbone was
evaluated.

In the paper Bjerge, Alison, et al. (2023) different
YOLOvV5 architectures are evaluated, finding that
YOLOv5m6 with 35.7 million parameters is the optimal
model to detect and classify small insect species. To
improve performance and speed up training, YOLOv5m6
is pre-trained on the Common Objects in Context
(COCO) dataset (Lin et al., 2015) that contains more
than 330 000 images of 80 different categories of objects.
In this work, we have fine-tuned YOLOv5m6 and
YOLOV5s6 on the dataset described in Datasets section.

Broad taxon classifier with anomaly
detection

The images were cropped and resized to 128 X 128 pixels,
which matches the dimensions used for the moth species
classifier. The training on the datasets was performed
using data augmentation, including image scaling, hori-
zontal and vertical flip and adding color jitter for
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brightness, contrast and saturation. We selected a batch
size of 256 for training our models, since it is faster to
update and results in less noise than smaller batch sizes.
The Adam optimizer with a fixed learning rate of
10x 10™* was chosen based on previously published
experiments (Bjerge, Geissmann, et al., 2023). We have
trained ResNet50v2 (He et al., 2016) to classify insects
according to broad taxonomic groups defined by the 16
classes as described in Datasets section. ResNet50v2 was
fine-tuned using pre-trained weights from ImageNet
(Russakovsky et al., 2015).

Out-of-distribution detection

The methodology of out-of-distribution detection (Bulusu
et al., 2020) and threshold (TH)-based anomaly tagging is
employed to identify instances of ‘anomalies’ such as
uncertain classifications. In our application, these
instances may manifest as debris, obscured or partially
visible insects, or those exhibiting blurriness—characteris-
tics that are not represented in the insect taxon training
dataset.

Often, softmax is the last layer in a classification neural
network, where the maximum value determines the pre-
dicted class. Here, we instead analyse the output distribu-
tion without the softmax layer to determine the
anomalies and predict the classes. The distribution of the
output x for each predicted class j" follows a normal
distribution xj ~ A~ yj,a]-z .

An example of the output distribution is shown in Fig-
ure 3 which is generated on the sample training dataset
(Diptera Brachycera) for corrected classified inputs. If the
output value x; is below a TH of th=u—2.50, we label the
input as anomaly. Consequently, when new unknown
inputs are presented for the trained network and the

DipteraBrachycera

0.10

Probability
© o
o o
[e)] [00]

o
o
=

o©
o
N}

0.00-
10 20 30

Class score (Th=5.89)

Figure 3. Probability density function for the output scores for
Diptera Brachycera and the chosen TH for uncertain anomalies.

Processing of Images from Insect Camera Traps

output lies below the TH, it will be classified as an ‘uncer-
tain’ prediction. The TH is set to ensure that fewer than
1% of the correctly classified inputs are discarded. How-
ever, THs between u—2.06 and p—3.00 can also be
selected, depending on the desired strictness of the anom-
aly detector.

Finally, the output scores x; are assigned a probability
F(x;) by estimating the cumulative distribution function as
the integral of the probability density function given by.

, n_ 1 W (x—p)’
F(xf””"”*am/,me W

Moth species classifier

We use the moth species classifier from the companion
code base of the Automated Monitoring of Insects (AMI)
dataset (Jain et al., 2025), trained on GBIF data that
encompass 2530 moth species found in the UK and Den-
mark. The model is tested on a dataset of moths recorded
with AMI traps in Denmark and the UK (Jain
et al., 2025) with an Fl-score of 0.784. All models within
the AMI data companion code base are trained using the
ResNet50 architecture. We anticipate that new classifica-
tion models, covering diverse regions worldwide, will
become available in the future, further enhancing the
applicability and scope of moth species classification.

Tracking

Our tracking algorithm was extended by comparing fea-
ture embeddings from the broad taxon classifier for the
tracking algorithm proposed by Bjerge, Mann, and
Hoye (2021). The Hungarian Algorithm is the chosen
method for finding the optimal assignment for a given
cost matrix. In this application, the cost matrix should
represent how likely it was that an insect in the previous
image had moved to a given position in the current
image. The cost function was defined as a weighted cost
of embeddings similarity, distance and area of matching
bounding boxes in the previous and current images. The
Euclidean distance D between the centre position (x,y) in
the two images was calculated as follows.

p=/(o-x1) + (1)’ @

This distance was normalized according to the diagonal

of the image I

Dmax = \/(Iheight)z + (Iwidth)2 (3)

The area cost was defined as the cost between the area
A of bounding boxes:

© 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 577

85U8017 SUOWIWOD SAERID 3|deoldde aupy Aq peusenob ase sejolie VO ‘85N JO Sa|n 10y Aiq1T8U1UO A8]IA LD (SUOTHPUOD-PUR-SLLIBY/WIOD A8 | 1M ARe.d 1 jBu 1 [UO//SdhLf) SUORIPUOD Pue SWLB | 8L 88S *[5202/2T/80] U0 Akeldiauluo A(IM euebingeueiyood A 000 2Z881/200T 0T/I0p/uoo A 1M Ariqijeuljuo'suoiied! jdnd sz//:sdiy Woly pepeojumoa ' ‘SZ0Z ‘S8re9s02



Processing of Images from Insect Camera Traps

A .
Acost = Tmm (4)
max
The similarity of feature embeddings was defined as the
cosine similarity between embeddings E of classified

insects:
E, -E,

_ 5
TEE | )

Ecor =

A final cost function in Equation (6) was defined with

a weighted cost of distance W,;, embeddings W, and
weighted cost of area W,,.

D
Cost = 7Wd + (I*Ecust)‘/ve + (lfAcost)‘/Va (6)
max
A cost TH was established to determine whether suc-
cessive insect detections should be associated. Subse-
quently, a track was established, stipulating a minimum
of two detections per track. For each track, information
such as the start date and time, duration, number of
detections and average size was recorded. Of particular
importance was the recording of the predominant insect
taxon or moth species, along with the accuracy of its clas-
sification. Ultimately, a track was considered valid when
> 50% of the detections corresponded to the predomi-
nant classification and comprised at least three detections
or had a duration of more than 4s.

Datasets

The TL recorded images were annotated to generate two
distinct datasets aimed at facilitating insect localization
followed by classification into broad taxonomic groups.
By reviewing the detected insects, we identified 10 orders
of insects (Coleoptera, Diptera, Ephemeroptera, Hemi-
ptera, Hymenoptera, Lepidoptera, Neuroptera and Tri-
choptera) and arachnids (Araneae and Opiliones)
frequently occurring in the dataset. For Diptera, Hyme-
noptera and Lepidoptera, it was also clear that the image
quality allowed us to identify morphologically distinct
taxonomic groups below the taxonomic level of order.
Our aim was to balance the taxonomic resolution of the
broad taxon classifier with the amount of training data
per class that could be identified with a reasonable time
investment. The arbitrary but pragmatic separation of
macro and micro Lepidoptera was performed by grouping
species of Lepidoptera at the family level. For more
detailed future ecological analyses, it would be relevant to
split the insect and arachnid taxa into further subgroups.
This two-step strategy was adopted to manage the chal-
lenge of curating well-balanced datasets that include
annotated insect taxa throughout the image dataset. This
approach not only addresses the complexity of dataset

K. Bjerge et al.
Table 1. Dataset for detection and localization.
Dataset Images Labels
Training 700 5335
Validation 77 482

creation but also enables flexibility in the processing
pipeline.

For detection, 777 images were selected and annotated,
skipping very small and blurry insects from being anno-
tated with bounding boxes. The 777 images were carefully
selected to represent a diverse range of scenarios, includ-
ing images from various camera traps that feature differ-
ent insect species. The selection also included challenging
cases, such as images with spider webs, dirt, blurry insects
and insects that obscured the camera lens. The complete
dataset with 5817 insect labels is shown in Table 1.

Example images of these taxa are provided in Figure 4.
The resulting dataset with 150 170 images, presented in
Table 2, is organized according to the hierarchical rank of
taxonomy. Furthermore, recognizing the inadvertent pres-
ence of vegetation, such as leaves and flowers, within the
images, an additional class dedicated to vegetation was
incorporated into the dataset to ensure comprehensive
coverage of the observed objects. The dataset was split in
80% for training and 20% for validation of the classifier.

Results

Insect detection and localization

The precision, recall and F1 score of the first stage of the
pipeline are listed in Table 3. It is observed that the large
YOLOv5m6 model has the highest F1 score; however, the
number of parameters for YOLOv5m6 is 35.7M compared
to 12.6 M for YOLOv5s6. Experiments with newer
models, such as YOLOv8m, did not improve the F1 score,
indicating that the annotated dataset needs to be refined
and expanded. The discrepancy between model predic-
tions and the annotated insects is particularly influenced
by the exclusion of small insects in the annotated images.

Broad taxon classifier with anomaly
detection

The precision, recall and F1 score of the second stage
of the pipeline are summarized in Table 4. The table
shows the results for the ResNet50v2 model evaluated
without the anomaly TH detector and where the uncer-
tain samples are removed. There is a small increase in all
metrics, which indicates that removing samples predicted
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Araneae Coleoptera Brachycera
(Spider) (Beetle) (True fly)

Ephemeroptera
(Mayfly)

Trichoceridae

(Winter cranefly) Hemiptera

Lepidoptera
Macro Micro

Neuroptera
(Lacewing)
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Nematocera
(Mosquito..)

Tipulidae
(Cranefly)

Opiliones
(Havestmen)

Trichoptera
(Caddisflies)
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Figure 4. Examples of the 15 arthropod taxa used to classify nocturnal insects and arachnids in broad taxonomy ranks.

Table 2. Dataset of image samples for broad taxon classification col-
lected during 2022 and 2023 from time-lapse images with 10-min
intervals.

Table 3. Validation results for insect detection and localization on
dataset with 482 labels.

Metric YOLOvV5m6 YOLOv5s6
Taxa in order Taxon Total Validation —
[suborder] rank samples (20%) Precision 0.923 0.938
Recall 0.919 0.886
Araneae Order 2037 408 F1-score 0.921 0.911
Coleoptera Order 2384 477
Diptera Brachycera Suborder 12303 2461
Diptera Nematocera Suborder 26890 5378
Diptera Tipulidae Suborder 1216 244
Diptera Trichoceridae Suborder 1664 333
Ephemeroptera Order 10 147 2030
Hemiptera Order 4897 980
P Table 4. Validation metrics for the broad taxon classifier. ResNet50v2
Hymenoptera Other Suborder 1661 333 : ) .
. without uncertainty are the metrics where 235 samples are removed
Hymenoptera Family 529 106
. by the anomaly threshold detector.
Vespidae
Lepidoptera Macro Unranked 18675 3735 ResNet50v2 without
Lepidoptera Micro Unranked 28141 5629 ResNet50v2 uncertain samples
Neuroptera Order 1106 222
Opiliones Order 615 123 Samples 25034 24799
Trichoptera Order 11978 2396 Precision 0.974 0.977
Vegetation Unranked 892 179 Recall 0.965 0.971
Total 125135 25035 F1-score 0.970 0.974
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Figure 5. Confusion matrix for the broad taxon classifier with out-of-distribution detection of samples marked as the uncertain class.

as ‘uncertain’ improves the classifier by accepting that c.
1.0% of the true positive samples are ignored.

The confusion matrix for the broad taxon classifier is
shown in Figure 5. Here, we have included the uncertain
class for predictions below the anomaly TH. High values
are observed in the diagonal of the matrix, indicating an
accurate classification. However, difficulties are observed
in classifying winter craneflies (Diptera Trichoceridae)
from mosquitoes (Diptera Nematocera) and craneflies
(Diptera, Tipulidae); this is due to a visually similar
appearance and possible errors in the training dataset for
these families of Diptera.

We evaluated the broad taxon classifier with anomaly
detection in the 10-minute TL recordings from 2022 to
2023. This was done by selecting up to 200 randomly
classified insects of the 16 taxa above and below the TH
learned from the output distribution of the dataset. We
manually verified the classified insects above and below
the anomaly TH by visual inspection. The results listed in
Table 5 show that in total, 92.3% of the insects are classi-
fied above the TH with a precision of 96.8%. The

remaining 7.7% insect detections classified as uncertain
below the anomaly TH have a similarly high precision of
95.9%. Spiders (Araneae) are the group of animals with
the lowest precision of 83% above the TH. This is
because many of the false-positive detections are spider
webs or dirt as the training data do contain spiders with
prey and more blurry and unclear objects.

Computational speed and power usage

The speed performance of our pipeline was evaluated
across various computing platforms, including edge pro-
cessing devices. These included a standard computer
equipped with an Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz
and an NVIDIA TITAN X Pascal GPU, as well as the NVI-
DIA Jetson Nano (JN) and Raspberry Pi 4 (RP4) (both
with 4 GB of memory) and Raspberry Pi 5 (RP5) (with
8 GB of memory). An additional 4 GB swap file was
required to execute the processing pipeline on the Jetson
Nano for nights with more than 60 insects per image. This
was necessary because the classification is performed in
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Table 5. Number of classified insect taxa above and below anomaly
threshold (TH) with precision based on maximum 200 randomly
selected predictions for each class (above and below the anomaly TH).
Above precision is the precision for classified insect taxa. Below preci-
sion is the precision for uncertainly classified insects.

Above Below

Taxon Above Below Above precision  precision

category TH TH (%) (%) (%)

Araneae 4957 864 85 83 100

Coleoptera 2896 351 89 96 98

Diptera 23941 1850 93 97 98
Brachycera

Diptera 171855 8760 95 92 98
Nematocera

Diptera 1858 56 97 98 100
Tipulidae

Diptera 7070 26 100 100 96
Trichoceridae

Ephemeroptera 25423 7374 78 98 100

Hemiptera 8008 345 96 92 100

Hymenoptera 6906 182 97 100 92
Other

Hymenoptera 542 91 86 100 91
Vespidae

Lepidoptera 46 425 2871 94 100 89
Macro

Lepidoptera 93870 6006 93 97 98
Micro

Neuroptera 1094 60 95 100 95

Opiliones 673 50 93 97 98

Trichoptera 64715 8935 88 98 100

Vegetation 2050 951 68 100 96

Total/average 462283 38772 923 96.8 95.9

batches, processing all insects detected in one image simul-
taneously to enhance performance. The three edge com-
puting devices were selected because they are roughly at
the same price, with the JN being the most expensive

Processing of Images from Insect Camera Traps

(~280 USD) at about twice the price of RP5 (~130 USD)
as JN also has a NVIDIA Tegra X1 GPU computer. We
have tested the pipeline by processing 6271 images from
one night with high insect activity. Detailed time perfor-
mance and power metrics are provided in Table 6. During
the test, an external SSD drive with images was connected
to the Raspberry Pi and Jetson Nano computers that con-
tinuously consumed 0.9 W of power.

Recording statistics

Twelve traps were in operation for a total of 1399 nights
during the first year of 2022, where 3 428 430 images were
captured with 45285526 insect detections and 94% were
above the anomaly TH and used for analysis. 97% of the
detections contribute to 1177 728 valid insect tracks with
a duration of more than 4s and a classification certainty
of > 50% for the classified insect. A summary of detailed
statistics for all traps in 2022 is found in the Supplemen-
tary Appendix Table Al and for statistics in 2023 see Sup-
plementary Appendix Table A2.

Additionally, three edge-processing camera systems
(RP4 and JN) have demonstrated promising reliability
during monitoring with the upload of abundance statis-
tics for three months in 2024.

Tracking and TL sampling

We hypothesize that tracking with high TL sampling (0.5
fps) is the most accurate method to correctly count and
classify each individual insect observed in front of the
camera. This method is compared to lower TL sampling
rates, where tracking becomes impractical for fast-moving
insects. However, lower TL sampling requires fewer
resources for both storage and image processing.

The tracking was evaluated by creating videos with
insect classification connected by colored tracks, as

Table 6. Processing performance on standard computer, Jetson Nano (JN) and Raspberry Pi's (RP) of 4 h recording with 6271 images with an
average of 35-37 insect detections per image. The standard computer contains an Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz and an NVIDIA TITAN

X Pascal GPU.
YOLOv5 Detected Detector sec/ Classifiers ms/ Tracker ms/ Average sed/ Total Power (W) idle/
Platform  model insects img det. img img hours active
Standard s6 221732 0.018 7.5 15 0.296 0.52 40/90
Standard m6 231835 0.032 6.7 15 0.295 0.51 40/90
IN s6 221732 0.351 57.6 197 2.58 4.50 3.7/10.2
IN mé 231835 0.848 58.8 197 3.22 5.61 3.7/10.2
RP5 s6 221732 1.97 193 88 8.87 15.45 3.5/10.4
RP5 m6 231835 4.30 189 88 11.4 19.82 3.5/10.4
RP4 s6 221732 5.30 464 169 21.9 38.14 3.0/6.8
RP4 m6 231835 9.99 484 169 28.1 48.87 3.0/6.8
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illustrated in the Supplementary Appendix Figure Al.
Video sequences with many fast-moving insects of similar
classes did have some difficulties; see example video
(https://www.youtube.com/watch?v=HzOCYIgnhlE) with
moderate insect activity. Here, it was observed that an
insect track will occasionally be associated with the wrong
insect. This problem could be minimized by lowering the
cost TH, but it requires a higher sampling rate to ensure
that the distance an insect has moved between two frames
is short.

An evaluation was made by comparing insect abun-
dance using insect tracking in images recorded with 0.5
fps and TL images recorded at various time intervals. For
each trap and taxonomic group, the abundance was cal-
culated using tracking and the result was compared with
a TL approach. The TL approach did not include tracking
as large recording intervals were used. Here, we used
localization and classification with anomaly detection by
removing detections with a classification score below the
learned TH described in Out-Of-Distribution Detection
section. We simulated TL sampling of 10, 30s, 1, 2, 5, 10,
15, 20 and 30 m by only including image detections with
these intervals.

The mean absolute difference in number of detections
between the time series of tracks and the TL detections is
shown in Figure 6. The red lines show the average differ-
ence for all traps and for each arthropod taxon. We
assume that the minimum difference would be the opti-
mal TL sampling interval approximating the numbers
obtained by tracking. For short TL intervals (below mini-
mum), the absolute difference is high since there are
more detections than tracks. For longer TL intervals
(above minimum), the absolute difference increases again,
which indicates that more tracks than detections are
encountered.

Pearson’s correlation was also applied to time series of
insect tracks and TL insect detections to compare the
temporal dynamics of the two metrics of activity. An
example of the correlation among four different traps and
insect groups is shown in Supplementary Appendix
Figures A2 and A3. The highest correlation is achieved by
5-min sampling intervals, except for Vespidae, where the
best correlation is achieved with 10-s intervals. The same
tendency is observed for all TL sampling intervals com-
pared to tracking, although the number of observed
detections and tracks differ.

In Supplementary Appendix Figure A4, we have sum-
marized the Pearson correlation of TL sampling intervals
and tracks for traps and the 15 broad arthropod taxa.
The correlation is generally high (0.9) for abundant taxa
with > 50 tracks/night. For taxa with abundance <10
tracks/night, the correlation drops for sampling intervals
greater than 10 min.

K. Bjerge et al.

The duration of each track should also be considered
when deciding on a TL interval. Supplementary Appendix
Figure A5 shows the distribution of track duration for
each of the 15 taxonomic groups from the camera trap
with high activity of insects. The average duration ranges
from 29 to 115s and varies among the different taxa. In
particular, lepidoptera have a longer track duration than
most other groups.

Figure 7 summarizes the frequency of minimum differ-
ence and gives the best correlation of sample intervals
with tracking. It indicates that a TL interval of 2 min
achieves in more than 60 situations (combinations of
traps and arthropod taxa) the minimum difference
between TL detections and tracking. The best Pearson
correlation is achieved for 10 min; however, 5- and
2-minute TL intervals are also a good choice as an alter-
native to tracking with 0.5fps. This approach would
reduce the number of recorded images and allow edge
processing of images in real time on the camera trap with
Raspberry Pi.

Monitoring insect abundance

The image processing pipeline allows for the extraction
of rich ecological information such as indicators of the
phenology (Forrest, 2016), relative abundance and rich-
ness of insects and arachnids from insect camera trap
images. This section presents an example of ecologically
relevant data from one of the insect camera traps with
high insect activity (LV2) deployed in Lille Vildmose
during the 2023 growing season. Figure 8 shows the
abundance of arthropods tracked and categorized by the
broad taxon classifier. The seasonal dynamics of each
taxon are characterized by activity during a large part of
the season with strong day-to-day variation in the num-
ber of tracks. The seasonal dynamics of the moth species
with the largest number of tracks are shown in Figure 9.
Compared to the broad taxonomic groups, detections of
individual species are confined to a smaller and species-
specific part of the season. Similar to the dynamics of
the broad taxonomic groups, the number of tracks of
individual moth species varies substantially from day to
day. Figure 10 shows that some species of moths domi-
nate the Lepidoptera community. A total of 635 distinct
moth species were classified, with 360 species having
more than five recorded observations across 12 traps and
two seasons.

Discussion

This work proposes a novel deep learning pipeline for
monitoring nocturnal insects and arachnids. The pipeline
performs detection, classification and tracking within
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Figure 6. Shows the mean absolute difference between tracks and number of detections with TL (TL) intervals (10s-30m) for all nocturnal
insects and traps (Difference marked with ‘e’ of different colours for each trap). The average difference for all traps is shown with a red line. The
value in brackets is the average number of tracks per night for a given taxon. Green indicates taxa with >50 tracks/night. Blue indicates taxa with

10-50 tracks/night and red indicates taxa with <10 tracks/night.

selected taxonomic groups, as well as filtering anomalies
such as blurry, dark, partly visible or uncertain insect
images. In particular, it features a new image classifier to
separate insects from insect camera traps into broad taxo-
nomic groups. We have shown that the pipeline can run
on edge platforms and have demonstrated its application
on images recorded with 12 insect camera traps installed
in bogs, heaths and forests across two full seasons.

Our pipeline features several improvements compared
to previous studies. First, our YOLOv5m6 object detector
model exhibits a 4.4% higher detection rate than
YOLOV5s6, similar to what was found in (Bjerge, Alison,
et al.,, 2023). However, while YOLOvV5s6 shows a slightly
lower recall during evaluation, it boasts faster processing
speeds, particularly evident on Raspberry Pi devices. Sur-
prisingly, the performance accuracy advantage observed
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arthropod taxa.

with YOLOv5s6 on Raspberry Pi platforms contrasts with
the less significant improvement noted when utilizing
GPU acceleration.

Second, the broad taxon classifier with anomaly detec-
tion achieved a high precision of 95.9% when evaluated
on TL recordings taken at 10-minute intervals. We identi-
fied 7.7% anomalies from 462 283 insect detections, indi-
cating that our anomaly filter effectively removes
uncertain classifications. The classification of insects and
arachnids into 15 broad taxonomic groups achieved a
precision of 96.8%, based on an evaluation of 200 ran-
dom trap images. These results indicate that the anomaly
detector finds and removes uncertain anomalies such as
debris, partially visible or blurry insects, or insects belong-
ing to groups not represented in the training data.

Third, we developed a simple TBD algorithm that
matches feature embeddings, distance and area for insect
tracking in TL images at a frame rate of 0.5 fps. The
tracking algorithm has been preliminarily evaluated by
visually inspecting the videos created by the proposed
pipeline. However, the same algorithm, but without the
cost of embedding feature, was already evaluated by
Bjerge, Nielsen, et al. (2021). Even if the amount of data
collected is substantial, the frame rate is rather low for
tracking and can sometimes be inaccurate for moving
insects of the same species due to the long distances they
can travel between frames. More work is needed to
improve the tracking algorithm before conducting a thor-
ough evaluation.

In addition to the AMI moth species classifier (Jain
et al., 2025), a growing number of classification models
are available. For example, the European moth species
classifier has high accuracy in high-quality images and is
trained on an extensive dataset in terms of species and
images (Korsch et al., 2021). Other models capable of
classifying moth species from specific regions such as
North-Eastern North America (Quebec/Vermont) and
Panama are also available (Rolnick et al., 2023). In other
studies, a single model for classification with hierarchical
taxonomic ranks has been proposed (Bjerge, Geissmann,
et al., 2023). However, creating a dataset and code that
enable the training and evaluation of such a model
requires further work.

We compared tracking with a standard TL sampling
approach without tracking. Lower TL sampling intervals
(10 s—30 min) significantly reduce the amount of data col-
lected. We found a high correlation between tracking and
TL sampling, particularly for taxa with more than 50
tracks per night. For taxa with fewer than 10 tracks per
night, the correlation decreases for TL intervals longer
than 10 min. The best mean absolute difference was found
for 2-mi intervals, but for taxa with fewer than one detec-
tion per night, the correlation decreases.

Edge processing on the JN platform is by far the fastest
and most power-efficient since RP5 and JN nearly con-
sume the same amount of power, but JN is more than
four times faster processing images with an average of
2.6s. RP4 is the slowest platform. However, the average
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Figure 8. The abundance of the 15 insect groups of broad taxonomy observed by trap LV2 in 2023.

processing (28.1s) time is still less than 30s and, there-
fore, still suitable for TL sampling down to intervals of
30 s when processing in real-time is performed. The most
power-efficient processing platform is the JN, which on
average consumes 26.3 Joule per image (YOLOV5s6)
where RP4 consumes 148.9 Joule and RP5 92.3 Joule.

All edge processing platforms are suitable for a TL
sampling approach with intervals as short as 10-30s.
Among these, the JN stands out as the most energy-
efficient solution, capable of real-time tracking at nearly

0.5 fps. The JN platform has also been used for the
real-time monitoring of diurnal insects, as demonstrated
by Bjerge, Mann, and Heye (2021). Alternatively, the
video monitoring platform suggested by Sittinger
et al. (2024) could be considered for deploying our pro-
posed pipeline directly on the Luxonis OAK-1 camera
with processing power, although some modifications may
be necessary.

Insect camera traps can generate detailed ecological
indicators at the community and species level. For
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Figure 9. The abundance of 15 moth species with the highest abundance observed by trap LV2 in 2023.

instance, the relative abundance and seasonal dynamics
of different broad taxonomic groups of terrestrial arthro-
pods highlight the diversity of nocturnal insects that can
be monitored with a UV-enabled insect camera trap.
Many insect taxa, for which we have very little data, are
quite abundant in the trap data, including adult stages
of insects normally associated with aquatic environments.
The strong day-to-day variation in activity for both
broad arthropod taxa and individual moth species

indicates that weather patterns play a key role in deter-
mining their occurrence in the trap (Bjerge, Nielsen,
et al., 2021).

As a large proportion of moth species can be identi-
fied directly from images, data from insect camera traps
can describe the seasonal dynamics of an important
part of the insect community. Such information could
allow conservation actions to be timed according to the
activity of individual species if, for instance, particular

586 © 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Abundance of moth species LV2

Ennomos alniaria
Crambus pratella
Deilephila elpenor
Cabera pusaria
Agriphila geniculea
Pandemis cerasana
Endotricha flammealis
Parapoynx stratiotata
Pheosia gnoma
Catoptria falsella
Hypena proboscidalis
Hydriomena furcata
Crambus pascuella
Geometra papilionaria
Rhopobota naevana
Eilema pygmaeola
Dysstroma truncata
Eudonia lacustrata
Spilosoma lutea
Cnephasia stephensiana
Cleorodes lichenaria
Ennomos subsignaria
Gymnoscelis rufifasciata
Plodia interpunctella
Cydia fagiglandana
Lomaspilis marginata
Endrosis sarcitrella
Pandemis heparana
Scoparia ambigualis
Epirrhoe alternata
Euproctis similis
Calliteara pudibunda
Tortrix viridana
Calamotropha paludella
Eilema depressa
Orthotaenia undulana
Ecliptopera silaceata
Epirrita autumnata
Eudonia mercurella
Ochropacha duplaris
Pleuroptya ruralis
Hedya nubiferana
Spilosoma lubricipeda
Agriphila straminella
Chrysoteuchia culmella
Deltote pygarga
Eudonia truncicolella
Pelosia muscerda
Catoptria verellus
Yponomeuta evonymella

0 500 1000 1500

Figure 10. The most dominant moth species observed by trap LV2 in 2023.

management should happen after the flight season of a
particular species. Another strength of the detailed
information provided by the traps is the possibility of
timing the search for rare species based on the abun-
dance of related and more common species active at
the same time.

The high number of species that can be detected with
traps suggests that this sensor is capable of detecting even
small changes in the composition of the community in
response to changes in the local environment. Such
changes could be the result of habitat deterioration or

2000 2500 3000 3500 4000
Tracks

restoration or the result of global change drivers, includ-
ing climate change.

The long-tailed distribution common to most biological
communities, where few species are common and many
species are rare, is also visible in insect camera trap data.
This poses a challenge for the training of reliable classifica-
tion models. However, given the rate at which insect cam-
era traps collect data and how their use is increasing, we
predict that even this challenge will become smaller and
that there is a promising future for insect camera traps as
a standardized and widespread monitoring approach.
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