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Abstract

Insects represent nearly half of all known multicellular species, but knowledge

about them lags behind for most vertebrate species. In part for this reason, they

are often neglected in biodiversity conservation policies and practice. Computer

vision tools, such as insect camera traps, for automated monitoring have the

potential to revolutionize insect study and conservation. To further advance

insect camera trapping and the analysis of their image data, effective image pro-

cessing pipelines are needed. In this paper, we present a flexible and fast proces-

sing pipeline designed to analyse these recordings by detecting, tracking and

classifying nocturnal insects in a broad taxonomy of 15 insect classes and reso-

lution of individual moth species. A classifier with anomaly detection is pro-

posed to filter dark, blurred or partially visible insects that will be uncertain to

classify correctly. A simple track-by-detection algorithm is proposed to track

classified insects by incorporating feature embeddings, distance and area cost.

We evaluated the computational speed and power performance of different

edge computing devices (Raspberry Pi’s and NVIDIA Jetson Nano) and com-

pared various time-lapse (TL) strategies with tracking. The minimum difference

of detections was found for 2-min TL intervals compared to tracking with 0.5

frames per second; however, for insects with fewer than one detection per

night, the Pearson correlation decreases. Shifting from tracking to TL monitor-

ing would reduce the number of recorded images and would allow for edge

processing of images in real-time on a camera trap with Raspberry Pi. The Jet-

son Nano is the most energy-efficient solution, capable of real-time tracking at

nearly 0.5 fps. Our processing pipeline was applied to more than 5.7 million

images recorded at 0.5 frames per second from 12 light camera traps during

two full seasons located in diverse habitats, including bogs, heaths and forests.

Our results thus show the scalability of insect camera traps.

Introduction

Insects make up the most diverse group of animals with

more than a million described species, and insects consti-

tute approximately half of total animal biomass (Bar-On

et al., 2018). Insects play vital roles in terrestrial ecosys-

tems and have significant economic importance as, for

example, agricultural pests, natural enemies and pollina-

tors. Changes in insect abundance have cascading effects

through the food web, suggesting that improved monitor-

ing efficiency is particularly relevant for this animal group

in the context of global change (Wagner et al., 2021).

Conventional insect trapping techniques, as outlined by

Montgomery et al. (2021), are labour intensive, and in

many cases, insects are sacrificed in the process. Manual

enumeration and taxonomic identification by human

experts are also very labour-intensive and often require

highly specialized knowledge.

Data on insect populations are notably sparse due to

limited resources, the vast number of species and the high

level of expertise required to study them (Didham

et al., 2020). The advent of automated monitoring
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technologies, employing computer vision and deep learn-

ing, has brought about a revolution in insect studies (Bes-

son et al., 2022; Lima et al., 2020; van Klink et al., 2022)

in both real-time scenarios (Bjerge, Mann, & Høye, 2021;

Ratnayake et al., 2021; Sittinger et al., 2024) and offline

analysis of images from time-lapse (TL) cameras (Bjerge,

Alison, et al., 2023; Geissmann et al., 2022). Automated

insect camera traps, coupled with data-analysing algo-

rithms rooted in computer vision and deep learning,

could therefore serve as invaluable tools to monitor insect

trends and elucidate the underlying drivers (Barlow &

O’Neill, 2020; Høye et al., 2021). Animal species recogni-

tion from camera traps is a well-established problem

within the computer vision community (Oliver

et al., 2023), with common challenges including poor

lighting, occlusion, camouflage and blur (Beery

et al., 2018). However, working with insects presents

unique challenges that are not encountered with tradi-

tional camera trap systems designed for large animals. For

example, while traditional camera trap images might

occasionally capture a target species, nearly every image

from an insect camera trap contains insects. This is espe-

cially true during nights of high activity, where hundreds

of nocturnal insects can be visible in a single image.

Nocturnal insects are difficult to monitor; however,

camera-based light traps (Bjerge, Nielsen, et al., 2021;

Korsch et al., 2021) and the advancement of standardized

hardware and frameworks for image-based monitoring of

nocturnal insects (Roy et al., 2024) pave the way for

increased temporal coverage and resolution in insect

monitoring. Automated monitoring of moths has been

evaluated by comparing traditional lethal methods with

light-based camera traps (Holzhauer et al., 2025; Möglich

et al., 2023). This first proof of concept has demonstrated

that automated moth traps capture phenological patterns

just as well as conventional, lethal traps (Holzhauer

et al., 2025).

Camera trapping methods based on TL recordings can

generate millions of images, especially when using sam-

pling intervals of seconds or a few minutes. However, as

these tools become more widely applied, they are likely to

generate large amounts (terabytes to petabytes) of image

data per year and storing all the data may not be feasible

or even sensible. It is possible that a reduced frame rate

will yield comparable results, but rare taxa are less likely

to be detected as the frame rate is reduced. An alternative

approach is to implement edge computing, where image

processing is performed directly on the recording camera

device. In this setup, only the processed data and, option-

ally, a subset of raw images are stored. Edge computing

facilitates real-time monitoring, allowing daily uploads of

insect taxa abundance statistics when internet access is

available. However, edge computing requires significant

computational resources, which increase the cost of the

camera system.

In this work, we propose a flexible and fast processing

pipeline to analyse image recordings from insect camera

traps by detecting, tracking and classifying nocturnal

insects at the broad taxonomic ranks such as order, sub-

order, family and at the species level for moths. We dem-

onstrate the efficacy of the proposed pipeline by

evaluating its speed performance on three different edge

computing devices, including Raspberry Pi 4, Raspberry

Pi 5 and NVIDIA Jetson Nano. Our pipeline supports

multiple TL strategies and real-time tracking. These strat-

egies are evaluated to ensure they provide comparable

measurements of activity dynamics over time. We apply

the pipeline to image data recorded with 12 insect camera

traps fitted with UV light to attract nocturnal insects

(Bjerge, Nielsen, et al., 2021). The dataset includes record-

ings from [ 3000 nights across 2 years. The statistics of

recorded images, detected and tracked insects from this

study are presented in this paper.

In summary, our objectives for this study are the

following:

• Propose a deep learning pipeline to measure temporal

abundance for taxa of nocturnal insects.

• Classify all images of insects into broad taxonomic

groups with anomaly detection and images of Lepidop-

tera to species.

• Evaluate four different computing platforms including

edge devices with respect to processing time and

energy consumption.

• Compare TL sampling with real-time tracking of indi-

vidual insects.

• Connect the pipeline to insect ecology and conserva-

tion by demonstrating the proposed image processing

pipeline in field-collected data.

Materials and Methods

Data collection

Automated light traps with cameras were constructed

with standard components consisting of a Raspberry Pi 4,

Brio Camera (Logitech, 2021), power controller, UV light

and light ring as proposed by Bjerge, Nielsen,

et al. (2021). A solid-state drive (500 GB) was connected

to the Raspberry Pi to store the captured images. The

mechanical design was improved, and the background

light table was replaced with a plastic plate covered with

a white fabric shown in Figure 1.

Twelve camera traps were placed at three different loca-

tions in Denmark during the 2022 and 2023 summer sea-

sons. These locations included a variety of habitats, such

as bogs, heaths and forests. Three nature areas managed
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by the Aage V. Jensen Naturfond were selected for sam-

pling: Lille Vildmose, Ovstrup Hede and Søholt Storskov

(https://www.avjf.dk/avjnf/naturomraader/). Within each

area, four traps were deployed, spaced 1–10 km apart.

Four of the traps were powered by solar panels, charge

regulators and batteries (12 V); all other traps were sup-

plied through mains power (220 V). The camera traps

were activated in the period from 11 p.m. to 3 a.m. each

night. We restricted sampling to this period each night to

ensure that power from the battery and solar panel was

available throughout the entire insect activity season in

Denmark from April to the end of October, that is, even

when the solar angle is fairly low at the sites. We turned

off the traps at 3 a.m. to ensure that insects would have

sufficient time to leave the trap before insectivorous birds

would become active in the morning.

A motion programme (Motion, 2021) running on the

Raspberry Pi 4 was installed to capture a sequence of

images whenever a movement was detected in the camera

view. The maximum frame rate was limited to 0.5 fps.

On warm summer nights with a high level of insect activ-

ity, more than 6000 images were captured per night. In

2022 and 2023 more than 5 million images with a pixel

size of 3840 × 2160 (11 pixels/mm) were recorded. As a

supplement to the motion recorded images, a TL

approach was used to save an image every 10 min inde-

pendent of insect activity.

Processing pipeline

For insect monitoring, Multiple Object Tracking (MOT)

would be relevant, especially for fast video recording.

MOT uses Computer Vision to estimate trajectories for

objects of interest presented in a sequence of images,

especially videos with high frame rates. Most MOT

methods require annotated tracking datasets, which can

be challenging to create.

We aimed to create a flexible pipeline that can be used

for both processing with and without tracking depending

on the chosen TL sampling interval. We chose the track-

by-detection (TBD) approach since it is flexible and can

be realized without any annotated tracking dataset. The

proposed processing pipeline is shown in Figure 2. The

pipeline is designed to prioritize flexibility above

efficiency.

The first step in our pipeline is to detect insects. To

perform this step, we first annotated a training dataset of

insects in the images collected from our camera traps. We

then trained a model to detect insects of interest while

ignoring dirt and small or blurry insects. In the future,

this step could be replaced with a more generic detector

trained on images from various backgrounds with insects.

The second and third steps classify the detected insects

using two separate models. One classifies all insects into

broad taxonomic groups, and the other classifies moths

to the species level. The two classification models can be

executed in parallel. The broad taxon classifier is trained

on the camera trap data. Here, we have sorted the insects

into order, suborders and families based on the content

of the recorded images. We have incorporated the anom-

aly detector presented by (Bjerge, Geissmann, et al., 2023)

into the classifier to filter insects which have class scores

that are outside the distribution of the created dataset of

broad taxonomic groups. These outliers could be partly

visible or blurry insects, or they could be representatives

of unseen classes of insects or other animals.

The third step implements the moth species classifier

trained on external data from the Global Biodiversity

Information Facility (GBIF) with all moth species known

to be present in the region where the trap is located.

Here, we have used the moth species classifier published

by Rolnick et al. (2023) trained for moth species found in

Denmark and the UK.

The output from the insect detector, broad taxon clas-

sifier and moth species classifier is a list of insect detec-

tions with additional information about the trap, image,

bounding box coordinates, confidence, anomaly, date,

time and embedding features.

The fourth tracking step is based on TBD by using the

bounding boxes and embedding features to create a final

list of insect tracks with information about predicted

Figure 1. Camera trap with UV light to attract and monitor nocturnal

insects.
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insect taxon, species, confidence, size, date, arrival time

and duration seen by the camera.

The source code for the pipeline is available on Github

(https://github.com/kimbjerge/MCC24-trap). Each step in

the pipeline is described below, with a focus on the con-

tributions for anomaly detection and the simple flexible

tracking of insects.

Insect detection and localization

Deep learning image object detection methods rely solely

on spatial image information to extract features and

detect regions of objects in the image. You-only-look-

once (Redmon et al., 2016) (YOLO) is a one-stage object

detector and one of the fastest object detectors, which is

important for processing millions of images or deploying

on edge computers. In our work, YOLOv5 (Glenn

Jocher, 2020) with CSPDarknet53 as the backbone was

evaluated.

In the paper Bjerge, Alison, et al. (2023) different

YOLOv5 architectures are evaluated, finding that

YOLOv5m6 with 35.7 million parameters is the optimal

model to detect and classify small insect species. To

improve performance and speed up training, YOLOv5m6

is pre-trained on the Common Objects in Context

(COCO) dataset (Lin et al., 2015) that contains more

than 330 000 images of 80 different categories of objects.

In this work, we have fine-tuned YOLOv5m6 and

YOLOv5s6 on the dataset described in Datasets section.

Broad taxon classifier with anomaly
detection

The images were cropped and resized to 128 × 128 pixels,

which matches the dimensions used for the moth species

classifier. The training on the datasets was performed

using data augmentation, including image scaling, hori-

zontal and vertical flip and adding color jitter for

Figure 2. Processing pipeline to localize, classify and track insects from motion or time-lapse recorded camera trap images. In Steps 1 and 2, the

detected insects are classified to the level of broad taxonomic groups parallel with moth species classification. Classification results are

concatenated ‘+’ to provide insect information for the final tracking step performed on motion-triggered images recorded with a high sampling

rate of 0.5 fps.
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brightness, contrast and saturation. We selected a batch

size of 256 for training our models, since it is faster to

update and results in less noise than smaller batch sizes.

The Adam optimizer with a fixed learning rate of

10 × 10�4 was chosen based on previously published

experiments (Bjerge, Geissmann, et al., 2023). We have

trained ResNet50v2 (He et al., 2016) to classify insects

according to broad taxonomic groups defined by the 16

classes as described in Datasets section. ResNet50v2 was

fine-tuned using pre-trained weights from ImageNet

(Russakovsky et al., 2015).

Out-of-distribution detection

The methodology of out-of-distribution detection (Bulusu

et al., 2020) and threshold (TH)-based anomaly tagging is

employed to identify instances of ‘anomalies’ such as

uncertain classifications. In our application, these

instances may manifest as debris, obscured or partially

visible insects, or those exhibiting blurriness—characteris-

tics that are not represented in the insect taxon training

dataset.

Often, softmax is the last layer in a classification neural

network, where the maximum value determines the pre-

dicted class. Here, we instead analyse the output distribu-

tion without the softmax layer to determine the

anomalies and predict the classes. The distribution of the

output x for each predicted class jth follows a normal

distribution xj � N μj, σ
2
j

� �
.

An example of the output distribution is shown in Fig-

ure 3 which is generated on the sample training dataset

(Diptera Brachycera) for corrected classified inputs. If the

output value xj is below a TH of th= μ�2:5σ, we label the
input as anomaly. Consequently, when new unknown

inputs are presented for the trained network and the

output lies below the TH, it will be classified as an ‘uncer-

tain’ prediction. The TH is set to ensure that fewer than

1% of the correctly classified inputs are discarded. How-

ever, THs between μ�2:0σ and μ�3:0σ can also be

selected, depending on the desired strictness of the anom-

aly detector.

Finally, the output scores xj are assigned a probability

F xj
� �

by estimating the cumulative distribution function as

the integral of the probability density function given by.

F xj k μ, σ2
� �

=
1

σ
ffiffiffiffiffi
2π

p
Z xj

�∞
e�

x�μð Þ2
2σ2

dx (1)

Moth species classifier

We use the moth species classifier from the companion

code base of the Automated Monitoring of Insects (AMI)

dataset (Jain et al., 2025), trained on GBIF data that

encompass 2530 moth species found in the UK and Den-

mark. The model is tested on a dataset of moths recorded

with AMI traps in Denmark and the UK (Jain

et al., 2025) with an F1-score of 0.784. All models within

the AMI data companion code base are trained using the

ResNet50 architecture. We anticipate that new classifica-

tion models, covering diverse regions worldwide, will

become available in the future, further enhancing the

applicability and scope of moth species classification.

Tracking

Our tracking algorithm was extended by comparing fea-

ture embeddings from the broad taxon classifier for the

tracking algorithm proposed by Bjerge, Mann, and

Høye (2021). The Hungarian Algorithm is the chosen

method for finding the optimal assignment for a given

cost matrix. In this application, the cost matrix should

represent how likely it was that an insect in the previous

image had moved to a given position in the current

image. The cost function was defined as a weighted cost

of embeddings similarity, distance and area of matching

bounding boxes in the previous and current images. The

Euclidean distance D between the centre position x, yð Þ in
the two images was calculated as follows.

D=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�x1ð Þ2 þ y2�y1ð Þ2

q
(2)

This distance was normalized according to the diagonal

of the image I:

Dmax =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iheight
� �2 þ Iwidthð Þ2

q
(3)

The area cost was defined as the cost between the area

A of bounding boxes:
Figure 3. Probability density function for the output scores for

Diptera Brachycera and the chosen TH for uncertain anomalies.
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Acost =
Amin

Amax
(4)

The similarity of feature embeddings was defined as the

cosine similarity between embeddings E of classified

insects:

Ecost =
E1 � E2

k E1 kk E2 k (5)

A final cost function in Equation (6) was defined with

a weighted cost of distance Wd, embeddings We and

weighted cost of area Wa.

Cost=
D

Dmax
Wd þ 1�Ecostð ÞWe þ 1�Acostð ÞWa (6)

A cost TH was established to determine whether suc-

cessive insect detections should be associated. Subse-

quently, a track was established, stipulating a minimum

of two detections per track. For each track, information

such as the start date and time, duration, number of

detections and average size was recorded. Of particular

importance was the recording of the predominant insect

taxon or moth species, along with the accuracy of its clas-

sification. Ultimately, a track was considered valid when

[ 50% of the detections corresponded to the predomi-

nant classification and comprised at least three detections

or had a duration of more than 4 s.

Datasets

The TL recorded images were annotated to generate two

distinct datasets aimed at facilitating insect localization

followed by classification into broad taxonomic groups.

By reviewing the detected insects, we identified 10 orders

of insects (Coleoptera, Diptera, Ephemeroptera, Hemi-

ptera, Hymenoptera, Lepidoptera, Neuroptera and Tri-

choptera) and arachnids (Araneae and Opiliones)

frequently occurring in the dataset. For Diptera, Hyme-

noptera and Lepidoptera, it was also clear that the image

quality allowed us to identify morphologically distinct

taxonomic groups below the taxonomic level of order.

Our aim was to balance the taxonomic resolution of the

broad taxon classifier with the amount of training data

per class that could be identified with a reasonable time

investment. The arbitrary but pragmatic separation of

macro and micro Lepidoptera was performed by grouping

species of Lepidoptera at the family level. For more

detailed future ecological analyses, it would be relevant to

split the insect and arachnid taxa into further subgroups.

This two-step strategy was adopted to manage the chal-

lenge of curating well-balanced datasets that include

annotated insect taxa throughout the image dataset. This

approach not only addresses the complexity of dataset

creation but also enables flexibility in the processing

pipeline.

For detection, 777 images were selected and annotated,

skipping very small and blurry insects from being anno-

tated with bounding boxes. The 777 images were carefully

selected to represent a diverse range of scenarios, includ-

ing images from various camera traps that feature differ-

ent insect species. The selection also included challenging

cases, such as images with spider webs, dirt, blurry insects

and insects that obscured the camera lens. The complete

dataset with 5817 insect labels is shown in Table 1.

Example images of these taxa are provided in Figure 4.

The resulting dataset with 150 170 images, presented in

Table 2, is organized according to the hierarchical rank of

taxonomy. Furthermore, recognizing the inadvertent pres-

ence of vegetation, such as leaves and flowers, within the

images, an additional class dedicated to vegetation was

incorporated into the dataset to ensure comprehensive

coverage of the observed objects. The dataset was split in

80% for training and 20% for validation of the classifier.

Results

Insect detection and localization

The precision, recall and F1 score of the first stage of the

pipeline are listed in Table 3. It is observed that the large

YOLOv5m6 model has the highest F1 score; however, the

number of parameters for YOLOv5m6 is 35.7M compared

to 12.6 M for YOLOv5s6. Experiments with newer

models, such as YOLOv8m, did not improve the F1 score,

indicating that the annotated dataset needs to be refined

and expanded. The discrepancy between model predic-

tions and the annotated insects is particularly influenced

by the exclusion of small insects in the annotated images.

Broad taxon classifier with anomaly
detection

The precision, recall and F1 score of the second stage

of the pipeline are summarized in Table 4. The table

shows the results for the ResNet50v2 model evaluated

without the anomaly TH detector and where the uncer-

tain samples are removed. There is a small increase in all

metrics, which indicates that removing samples predicted

Table 1. Dataset for detection and localization.

Dataset Images Labels

Training 700 5335

Validation 77 482

578 ª 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Araneae 
(Spider)

Coleoptera 
(Beetle)

Brachycera
(True fly)

Nematocera
(Mosquito..)

Tipulidae
(Cranefly)

Trichoceridae
(Winter cranefly)

Ephemeroptera 
(Mayfly) Hemiptera Hymenoptera Vespidae

Lepidoptera
Macro

Lepidoptera
Micro

Neuroptera
(Lacewing)

Opiliones
(Havestmen)

Trichoptera
(Caddisflies)

Figure 4. Examples of the 15 arthropod taxa used to classify nocturnal insects and arachnids in broad taxonomy ranks.

Table 2. Dataset of image samples for broad taxon classification col-

lected during 2022 and 2023 from time-lapse images with 10-min

intervals.

Taxa in order

[suborder]

Taxon

rank

Total

samples

Validation

(20%)

Araneae Order 2037 408

Coleoptera Order 2384 477

Diptera Brachycera Suborder 12 303 2461

Diptera Nematocera Suborder 26 890 5378

Diptera Tipulidae Suborder 1216 244

Diptera Trichoceridae Suborder 1664 333

Ephemeroptera Order 10 147 2030

Hemiptera Order 4897 980

Hymenoptera Other Suborder 1661 333

Hymenoptera

Vespidae

Family 529 106

Lepidoptera Macro Unranked 18 675 3735

Lepidoptera Micro Unranked 28 141 5629

Neuroptera Order 1106 222

Opiliones Order 615 123

Trichoptera Order 11 978 2396

Vegetation Unranked 892 179

Total 125 135 25 035

Table 3. Validation results for insect detection and localization on

dataset with 482 labels.

Metric YOLOv5m6 YOLOv5s6

Precision 0.923 0.938

Recall 0.919 0.886

F1-score 0.921 0.911

Table 4. Validation metrics for the broad taxon classifier. ResNet50v2

without uncertainty are the metrics where 235 samples are removed

by the anomaly threshold detector.

ResNet50v2

ResNet50v2 without

uncertain samples

Samples 25 034 24 799

Precision 0.974 0.977

Recall 0.965 0.971

F1-score 0.970 0.974
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as ‘uncertain’ improves the classifier by accepting that c.

1.0% of the true positive samples are ignored.

The confusion matrix for the broad taxon classifier is

shown in Figure 5. Here, we have included the uncertain

class for predictions below the anomaly TH. High values

are observed in the diagonal of the matrix, indicating an

accurate classification. However, difficulties are observed

in classifying winter craneflies (Diptera Trichoceridae)

from mosquitoes (Diptera Nematocera) and craneflies

(Diptera, Tipulidae); this is due to a visually similar

appearance and possible errors in the training dataset for

these families of Diptera.

We evaluated the broad taxon classifier with anomaly

detection in the 10-minute TL recordings from 2022 to

2023. This was done by selecting up to 200 randomly

classified insects of the 16 taxa above and below the TH

learned from the output distribution of the dataset. We

manually verified the classified insects above and below

the anomaly TH by visual inspection. The results listed in

Table 5 show that in total, 92.3% of the insects are classi-

fied above the TH with a precision of 96.8%. The

remaining 7.7% insect detections classified as uncertain

below the anomaly TH have a similarly high precision of

95.9%. Spiders (Araneae) are the group of animals with

the lowest precision of 83% above the TH. This is

because many of the false-positive detections are spider

webs or dirt as the training data do contain spiders with

prey and more blurry and unclear objects.

Computational speed and power usage

The speed performance of our pipeline was evaluated

across various computing platforms, including edge pro-

cessing devices. These included a standard computer

equipped with an Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz

and an NVIDIA TITAN X Pascal GPU, as well as the NVI-

DIA Jetson Nano (JN) and Raspberry Pi 4 (RP4) (both

with 4 GB of memory) and Raspberry Pi 5 (RP5) (with

8 GB of memory). An additional 4 GB swap file was

required to execute the processing pipeline on the Jetson

Nano for nights with more than 60 insects per image. This

was necessary because the classification is performed in

Figure 5. Confusion matrix for the broad taxon classifier with out-of-distribution detection of samples marked as the uncertain class.
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batches, processing all insects detected in one image simul-

taneously to enhance performance. The three edge com-

puting devices were selected because they are roughly at

the same price, with the JN being the most expensive

(∼280 USD) at about twice the price of RP5 (∼130 USD)

as JN also has a NVIDIA Tegra X1 GPU computer. We

have tested the pipeline by processing 6271 images from

one night with high insect activity. Detailed time perfor-

mance and power metrics are provided in Table 6. During

the test, an external SSD drive with images was connected

to the Raspberry Pi and Jetson Nano computers that con-

tinuously consumed 0.9W of power.

Recording statistics

Twelve traps were in operation for a total of 1399 nights

during the first year of 2022, where 3 428 430 images were

captured with 45 285 526 insect detections and 94% were

above the anomaly TH and used for analysis. 97% of the

detections contribute to 1 177 728 valid insect tracks with

a duration of more than 4 s and a classification certainty

of [ 50% for the classified insect. A summary of detailed

statistics for all traps in 2022 is found in the Supplemen-

tary Appendix Table A1 and for statistics in 2023 see Sup-

plementary Appendix Table A2.

Additionally, three edge-processing camera systems

(RP4 and JN) have demonstrated promising reliability

during monitoring with the upload of abundance statis-

tics for three months in 2024.

Tracking and TL sampling

We hypothesize that tracking with high TL sampling (0.5

fps) is the most accurate method to correctly count and

classify each individual insect observed in front of the

camera. This method is compared to lower TL sampling

rates, where tracking becomes impractical for fast-moving

insects. However, lower TL sampling requires fewer

resources for both storage and image processing.

The tracking was evaluated by creating videos with

insect classification connected by colored tracks, as

Table 5. Number of classified insect taxa above and below anomaly

threshold (TH) with precision based on maximum 200 randomly

selected predictions for each class (above and below the anomaly TH).

Above precision is the precision for classified insect taxa. Below preci-

sion is the precision for uncertainly classified insects.

Taxon

category

Above

TH

Below

TH

Above

(%)

Above

precision

(%)

Below

precision

(%)

Araneae 4957 864 85 83 100

Coleoptera 2896 351 89 96 98

Diptera

Brachycera

23 941 1850 93 97 98

Diptera

Nematocera

171 855 8760 95 92 98

Diptera

Tipulidae

1858 56 97 98 100

Diptera

Trichoceridae

7070 26 100 100 96

Ephemeroptera 25 423 7374 78 98 100

Hemiptera 8008 345 96 92 100

Hymenoptera

Other

6906 182 97 100 92

Hymenoptera

Vespidae

542 91 86 100 91

Lepidoptera

Macro

46 425 2871 94 100 89

Lepidoptera

Micro

93 870 6006 93 97 98

Neuroptera 1094 60 95 100 95

Opiliones 673 50 93 97 98

Trichoptera 64 715 8935 88 98 100

Vegetation 2050 951 68 100 96

Total/average 462 283 38 772 92.3 96.8 95.9

Table 6. Processing performance on standard computer, Jetson Nano (JN) and Raspberry Pi’s (RP) of 4 h recording with 6271 images with an

average of 35–37 insect detections per image. The standard computer contains an Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz and an NVIDIA TITAN

X Pascal GPU.

Platform

YOLOv5

model

Detected

insects

Detector sec/

img

Classifiers ms/

det.

Tracker ms/

img

Average sec/

img

Total

hours

Power (W) idle/

active

Standard s6 221 732 0.018 7.5 15 0.296 0.52 40/90

Standard m6 231 835 0.032 6.7 15 0.295 0.51 40/90

JN s6 221 732 0.351 57.6 197 2.58 4.50 3.7/10.2

JN m6 231 835 0.848 58.8 197 3.22 5.61 3.7/10.2

RP5 s6 221 732 1.97 193 88 8.87 15.45 3.5/10.4

RP5 m6 231 835 4.30 189 88 11.4 19.82 3.5/10.4

RP4 s6 221 732 5.30 464 169 21.9 38.14 3.0/6.8

RP4 m6 231 835 9.99 484 169 28.1 48.87 3.0/6.8
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illustrated in the Supplementary Appendix Figure A1.

Video sequences with many fast-moving insects of similar

classes did have some difficulties; see example video

(https://www.youtube.com/watch?v=HzOCYlgnhlE) with

moderate insect activity. Here, it was observed that an

insect track will occasionally be associated with the wrong

insect. This problem could be minimized by lowering the

cost TH, but it requires a higher sampling rate to ensure

that the distance an insect has moved between two frames

is short.

An evaluation was made by comparing insect abun-

dance using insect tracking in images recorded with 0.5

fps and TL images recorded at various time intervals. For

each trap and taxonomic group, the abundance was cal-

culated using tracking and the result was compared with

a TL approach. The TL approach did not include tracking

as large recording intervals were used. Here, we used

localization and classification with anomaly detection by

removing detections with a classification score below the

learned TH described in Out-Of-Distribution Detection

section. We simulated TL sampling of 10, 30 s, 1, 2, 5, 10,

15, 20 and 30 m by only including image detections with

these intervals.

The mean absolute difference in number of detections

between the time series of tracks and the TL detections is

shown in Figure 6. The red lines show the average differ-

ence for all traps and for each arthropod taxon. We

assume that the minimum difference would be the opti-

mal TL sampling interval approximating the numbers

obtained by tracking. For short TL intervals (below mini-

mum), the absolute difference is high since there are

more detections than tracks. For longer TL intervals

(above minimum), the absolute difference increases again,

which indicates that more tracks than detections are

encountered.

Pearson’s correlation was also applied to time series of

insect tracks and TL insect detections to compare the

temporal dynamics of the two metrics of activity. An

example of the correlation among four different traps and

insect groups is shown in Supplementary Appendix

Figures A2 and A3. The highest correlation is achieved by

5-min sampling intervals, except for Vespidae, where the

best correlation is achieved with 10-s intervals. The same

tendency is observed for all TL sampling intervals com-

pared to tracking, although the number of observed

detections and tracks differ.

In Supplementary Appendix Figure A4, we have sum-

marized the Pearson correlation of TL sampling intervals

and tracks for traps and the 15 broad arthropod taxa.

The correlation is generally high (0.9) for abundant taxa

with [ 50 tracks/night. For taxa with abundance \10

tracks/night, the correlation drops for sampling intervals

greater than 10 min.

The duration of each track should also be considered

when deciding on a TL interval. Supplementary Appendix

Figure A5 shows the distribution of track duration for

each of the 15 taxonomic groups from the camera trap

with high activity of insects. The average duration ranges

from 29 to 115 s and varies among the different taxa. In

particular, lepidoptera have a longer track duration than

most other groups.

Figure 7 summarizes the frequency of minimum differ-

ence and gives the best correlation of sample intervals

with tracking. It indicates that a TL interval of 2 min

achieves in more than 60 situations (combinations of

traps and arthropod taxa) the minimum difference

between TL detections and tracking. The best Pearson

correlation is achieved for 10 min; however, 5- and

2-minute TL intervals are also a good choice as an alter-

native to tracking with 0.5fps. This approach would

reduce the number of recorded images and allow edge

processing of images in real time on the camera trap with

Raspberry Pi.

Monitoring insect abundance

The image processing pipeline allows for the extraction

of rich ecological information such as indicators of the

phenology (Forrest, 2016), relative abundance and rich-

ness of insects and arachnids from insect camera trap

images. This section presents an example of ecologically

relevant data from one of the insect camera traps with

high insect activity (LV2) deployed in Lille Vildmose

during the 2023 growing season. Figure 8 shows the

abundance of arthropods tracked and categorized by the

broad taxon classifier. The seasonal dynamics of each

taxon are characterized by activity during a large part of

the season with strong day-to-day variation in the num-

ber of tracks. The seasonal dynamics of the moth species

with the largest number of tracks are shown in Figure 9.

Compared to the broad taxonomic groups, detections of

individual species are confined to a smaller and species-

specific part of the season. Similar to the dynamics of

the broad taxonomic groups, the number of tracks of

individual moth species varies substantially from day to

day. Figure 10 shows that some species of moths domi-

nate the Lepidoptera community. A total of 635 distinct

moth species were classified, with 360 species having

more than five recorded observations across 12 traps and

two seasons.

Discussion

This work proposes a novel deep learning pipeline for

monitoring nocturnal insects and arachnids. The pipeline

performs detection, classification and tracking within
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selected taxonomic groups, as well as filtering anomalies

such as blurry, dark, partly visible or uncertain insect

images. In particular, it features a new image classifier to

separate insects from insect camera traps into broad taxo-

nomic groups. We have shown that the pipeline can run

on edge platforms and have demonstrated its application

on images recorded with 12 insect camera traps installed

in bogs, heaths and forests across two full seasons.

Our pipeline features several improvements compared

to previous studies. First, our YOLOv5m6 object detector

model exhibits a 4.4% higher detection rate than

YOLOv5s6, similar to what was found in (Bjerge, Alison,

et al., 2023). However, while YOLOv5s6 shows a slightly

lower recall during evaluation, it boasts faster processing

speeds, particularly evident on Raspberry Pi devices. Sur-

prisingly, the performance accuracy advantage observed

Figure 6. Shows the mean absolute difference between tracks and number of detections with TL (TL) intervals (10 s–30m) for all nocturnal

insects and traps (Difference marked with ‘•’ of different colours for each trap). The average difference for all traps is shown with a red line. The

value in brackets is the average number of tracks per night for a given taxon. Green indicates taxa with >50 tracks/night. Blue indicates taxa with

10–50 tracks/night and red indicates taxa with <10 tracks/night.
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with YOLOv5s6 on Raspberry Pi platforms contrasts with

the less significant improvement noted when utilizing

GPU acceleration.

Second, the broad taxon classifier with anomaly detec-

tion achieved a high precision of 95.9% when evaluated

on TL recordings taken at 10-minute intervals. We identi-

fied 7.7% anomalies from 462 283 insect detections, indi-

cating that our anomaly filter effectively removes

uncertain classifications. The classification of insects and

arachnids into 15 broad taxonomic groups achieved a

precision of 96.8%, based on an evaluation of 200 ran-

dom trap images. These results indicate that the anomaly

detector finds and removes uncertain anomalies such as

debris, partially visible or blurry insects, or insects belong-

ing to groups not represented in the training data.

Third, we developed a simple TBD algorithm that

matches feature embeddings, distance and area for insect

tracking in TL images at a frame rate of 0.5 fps. The

tracking algorithm has been preliminarily evaluated by

visually inspecting the videos created by the proposed

pipeline. However, the same algorithm, but without the

cost of embedding feature, was already evaluated by

Bjerge, Nielsen, et al. (2021). Even if the amount of data

collected is substantial, the frame rate is rather low for

tracking and can sometimes be inaccurate for moving

insects of the same species due to the long distances they

can travel between frames. More work is needed to

improve the tracking algorithm before conducting a thor-

ough evaluation.

In addition to the AMI moth species classifier (Jain

et al., 2025), a growing number of classification models

are available. For example, the European moth species

classifier has high accuracy in high-quality images and is

trained on an extensive dataset in terms of species and

images (Korsch et al., 2021). Other models capable of

classifying moth species from specific regions such as

North-Eastern North America (Quebec/Vermont) and

Panama are also available (Rolnick et al., 2023). In other

studies, a single model for classification with hierarchical

taxonomic ranks has been proposed (Bjerge, Geissmann,

et al., 2023). However, creating a dataset and code that

enable the training and evaluation of such a model

requires further work.

We compared tracking with a standard TL sampling

approach without tracking. Lower TL sampling intervals

(10 s–30 min) significantly reduce the amount of data col-

lected. We found a high correlation between tracking and

TL sampling, particularly for taxa with more than 50

tracks per night. For taxa with fewer than 10 tracks per

night, the correlation decreases for TL intervals longer

than 10 min. The best mean absolute difference was found

for 2-mi intervals, but for taxa with fewer than one detec-

tion per night, the correlation decreases.

Edge processing on the JN platform is by far the fastest

and most power-efficient since RP5 and JN nearly con-

sume the same amount of power, but JN is more than

four times faster processing images with an average of

2.6 s. RP4 is the slowest platform. However, the average

Figure 7. The frequency of best correlation and minimum difference between the number of tracks (0.5fps) and the number of detections for

different time-lapse (TL) intervals. Each observation concerns the best correlation or minimum difference for one trap and one of the 15 broad

arthropod taxa.
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processing (28.1 s) time is still less than 30 s and, there-

fore, still suitable for TL sampling down to intervals of

30 s when processing in real-time is performed. The most

power-efficient processing platform is the JN, which on

average consumes 26.3 Joule per image (YOLOv5s6)

where RP4 consumes 148.9 Joule and RP5 92.3 Joule.

All edge processing platforms are suitable for a TL

sampling approach with intervals as short as 10–30 s.
Among these, the JN stands out as the most energy-

efficient solution, capable of real-time tracking at nearly

0.5 fps. The JN platform has also been used for the

real-time monitoring of diurnal insects, as demonstrated

by Bjerge, Mann, and Høye (2021). Alternatively, the

video monitoring platform suggested by Sittinger

et al. (2024) could be considered for deploying our pro-

posed pipeline directly on the Luxonis OAK-1 camera

with processing power, although some modifications may

be necessary.

Insect camera traps can generate detailed ecological

indicators at the community and species level. For

Figure 8. The abundance of the 15 insect groups of broad taxonomy observed by trap LV2 in 2023.
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instance, the relative abundance and seasonal dynamics

of different broad taxonomic groups of terrestrial arthro-

pods highlight the diversity of nocturnal insects that can

be monitored with a UV-enabled insect camera trap.

Many insect taxa, for which we have very little data, are

quite abundant in the trap data, including adult stages

of insects normally associated with aquatic environments.

The strong day-to-day variation in activity for both

broad arthropod taxa and individual moth species

indicates that weather patterns play a key role in deter-

mining their occurrence in the trap (Bjerge, Nielsen,

et al., 2021).

As a large proportion of moth species can be identi-

fied directly from images, data from insect camera traps

can describe the seasonal dynamics of an important

part of the insect community. Such information could

allow conservation actions to be timed according to the

activity of individual species if, for instance, particular

Figure 9. The abundance of 15 moth species with the highest abundance observed by trap LV2 in 2023.
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management should happen after the flight season of a

particular species. Another strength of the detailed

information provided by the traps is the possibility of

timing the search for rare species based on the abun-

dance of related and more common species active at

the same time.

The high number of species that can be detected with

traps suggests that this sensor is capable of detecting even

small changes in the composition of the community in

response to changes in the local environment. Such

changes could be the result of habitat deterioration or

restoration or the result of global change drivers, includ-

ing climate change.

The long-tailed distribution common to most biological

communities, where few species are common and many

species are rare, is also visible in insect camera trap data.

This poses a challenge for the training of reliable classifica-

tion models. However, given the rate at which insect cam-

era traps collect data and how their use is increasing, we

predict that even this challenge will become smaller and

that there is a promising future for insect camera traps as

a standardized and widespread monitoring approach.

Figure 10. The most dominant moth species observed by trap LV2 in 2023.
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