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Abstract

Labelling images of Lepidoptera (moths) from automated
camera systems is vital for understanding insect declines.
However, accurate species identification is challenging due
to domain shifts between curated images and noisy field im-
agery. We propose a lightweight classification approach,
combining limited expert-labelled field data with knowledge
distillation from the high-performance BioCLIP2 founda-
tion model into a ConvNeXt-tiny architecture. Experiments
on 101 Danish moth species from AMI camera systems
demonstrate that BioCLIP2 substantially outperforms other
methods and that our distilled lightweight model achieves
comparable accuracy with significantly reduced computa-
tional cost. These insights offer practical guidelines for
the development of efficient insect monitoring systems and
bridging domain gaps for fine-grained classification.

1. Introduction

Insects are vital to terrestrial ecosystems and global agricul-
ture [18]. They constitute roughly half of all animal species
[29], and terrestrial arthropods collectively account for 20
times the biomass of all wild mammals and birds combined
[2]. Despite their importance, insect populations are declin-
ing worldwide [31, 33], this remains poorly understood due
to a lack of scalable field monitoring methods [20].

In response, automated insect camera traps [4, 10, 27]
autonomously photograph insects in-situ, enabling long-
term and resource-efficient population monitoring [26].
But, the resulting raw imagery must be processed before it
can provide actionable ecological insights. Advances in de-
tection [5, 6] and classification [7, 23] have made computer
vision the leading approach for this task [13].

Species-level recognition from camera-trap images re-
mains difficult: morphological differences are subtle and
expert taxonomists are scarce [9], making annotation ex-
pensive. Citizen science repositories such as the Global
Biodiversity Information Facility (GBIF) [1] provide la-

5110

Sareh Rowlands!
Toke Thomas Hgye?
2 Aarhus University

belled images for many taxa and are popular sources of
training data. However, domain shift (differences in pose,
lighting, and image quality between GBIF and automated
camera trap imagery) reduces performance when models
are trained exclusively on “source-domain” GBIF images
and evaluated on “target-domain” in-situ insects [14].

In addition, developing lightweight computer vision
models for insect monitoring remains important because:
(1) ecologists worldwide may lack the computing infras-
tructure to run large models efficiently; (2) lightweight
models are easier to retrain, which is valuable as most in-
sect species remain undiscovered [29] and new species must
be integrated; (3) lightweight architectures facilitate ‘edge’
computing directly on camera trap hardware in remote en-
vironments. This is common in insect camera trap designs
[3, 8, 26] where on-device inference is critical when con-
nectivity constraints prohibit remote inference. Edge infer-
ence also allows the detection of specific species of interest
on the device, allowing for the removal of unwanted images,
conserving storage space for long deployments [10, 25].

We develop and evaluate a lightweight architecture that
addresses domain shift through two strategies: (1) integrat-
ing expert-labelled target-domain data into training, and
(2) guiding learning via knowledge distillation (KD) from
large-scale pretrained foundation models. We evaluate on
fine-grained and domain-shifted dataset of moth images
from Automated Monitoring of Insects (AMI) cameras [14]
deployed around 12 sites in Denmark. Combining expert-
labelled target-domain data and KD enables our lightweight
model to achieve comparable performance to BioCLIP and
BioCLIP2, despite significantly lower parameter count. We
provide recommendations for ecologists to use foundation
models for their applications, and for the computer vision
community towards fine-grained domain adaptation.

1.1. Related Work

There are many established methods for domain adaptation
[34], including feature alignment, adversarial learning and
self-training. Synthetic data generation [15] has also pre-
viously been shown to improve generalisation for insect
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Figure 1. Data processing pipeline showing how moth images from AMI (target-domain) and GBIF (source-domain) are curated, labelled
at the species level, and split into training and test sets. Controlled mixing of domains enables analysis of domain shift effects. Example

images illustrate differences between the two domains.

images. Here, we explore domain adaptation through su-
pervised mixing of the training set as it is straightforward
to implement and understand and allows us to leverage the
limited expert-labelled target data available in our scenario.

The use of CLIP-style [24] foundation models offers
another route to cross-domain generalisation, pre-training
large-scale representations transferable to diverse target do-
mains. For biological images, recent models such as Insect-
Foundation [22], CLiBD [11] and Biotrove [35] have shown
strong performance on fine-grained insect identification
tasks. Notably, BioCLIP [28], trained on the TreeOfLife-
10M dataset, and its successor BioCLIP2 [12], scaled to 214
million mostly GBIF-sourced images, achieve state-of-the-
art accuracy. To retain the broad domain knowledge of such
models while adapting to specific target tasks, we use KD,
training smaller student model is to match the features of a
larger pre-trained teacher [21]. In this context, KD serves
as a domain adaptation strategy, transferring generalisable
representations from teacher to student [16].

Our work is related to [14], which introduced the AMI
dataset and demonstrated ConvNeXt [17] performance on
cross-domain insect classification. We benchmark founda-
tion models using a balanced dataset of Danish moth species
and explore specialist model training with limited domain-
specific data. Foundation models have also been used for
camera trap classification; [32] applied pre-trained mod-
els for zero-shot vertebrate identification, showing strong
adaptability. We extend this by evaluating BioCLIP2 on
AMI insect images, assessing the impact of expert-labelled
target data and knowledge distillation for smaller models.
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2. Dataset

We used a dataset of images of moths species collected
from 12 AMI systems deployed in three regions of Den-
mark across three years (2022-2024) [3]. Images captured
by AMI are high resolution photographs of a large white
screen, where moths are attracted to a UV light. Moths
themselves make up small portions of each image and pre-
existing object detection methods give crops for each moth
instance [20]. Crops can be highly variable in size, lighting
and quality, Figure 1 shows some examples. And, follow-
ing the long-tailed distribution typical of ecological scenar-
ios, there are typically many images of the most common
species, and relatively few of the others [30]. Identifiable
moths in the AMI images have been labelled to the species
level by one of the authors, an expert insect taxonomist spe-
cialised in moth species identification. As a primary focus
in this study is domain shift, for our experiments, we use
a subset of AMI moth crops represented by 101 species,
where each species is represented by 110 AMI images, to
isolate and study domain-shift effects. We refer to these
throughout as the “target-domain” examples.

Individual images in the target-domain can be highly cor-
related, as data are obtained by time-lapse, and frequently
an individual is stationary for long periods and is therefore
imaged repeatedly in the same position. To prevent leak-
age of highly correlated images from the training set into
our test set, we use an unsupervised deep clustering method
to split the train/test set for each class (see Supplementary
Section 8). Of the 110 images per class, a test set of 10 is
withheld, leaving 100 per class for training.



To leverage GBIF images, we download each directly
using an automated toolkit, supplying the GBIF species ID
for each AMI class and filtering for the ‘imago’ or adult
life-stage, matching AMI imagery. For each class, we ob-
tained 224 images from unique GBIF occurrences, forming
the “source-domain” dataset. These are randomly split into
184 training and 20 withheld test images per class.

We progressively increase the proportion of target-
domain images in training. At each step, we include as
many GBIF images as possible to maximise training size.
Once all available target images are used (over 35%), fur-
ther increases in the target proportion require reducing
GBIF images. We constructed eight training sets with
target-domain contributions of 0%, 1%, 5%, 10%, 20%,
25%,33%, and 50% (statistics in Supplementary Section 9).

3. Methodology

We train four models for moth species classification across
domain-mixed datasets. To benchmark BioCLIP and Bio-
CLIP2, we train linear classifiers on their frozen vision
encoder outputs (as shown in Figure 2). We also train
a partially fine-tuned ConvNeXt-tiny model, unfreezing
its classification head and top two layers, initialised with
ImageNet-1K weights; this setup was found to perform
best empirically. Finally, we apply KD from BioCLIP2
to ConvNeXt-tiny to improve generalisation through richer

feature representations.

MSE (knowledge
distillation loss)

Linear layer

BIOCLIP/2 Transformer (frozen) :
(trainable)

*

+— Feature Layers = C(lassification
Block

Figure 2. Foundation vision encoders (top) with a trainable classi-
fication linear layer. ConvNeXt instance (bottom) with pre-trained
feature layers 1-6 frozen, the final feature layer is used for the
mean-squared error (MSE) distillation loss for ConvNeXt+KD.

3.1. Knowledge Distillation

We use feature-based KD [21], where the student network
aims to match the learned feature representations from the
teacher to its own internal embeddings. Specifically, we im-
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plement a ‘hint’ loss, defined as the mean squared error be-
tween the final feature representation of ConvNeXt and the
output embedding of BioCLIP2, defined by Equation (1):

1
Lhine = 7 ; (55 — i)’ (1)

Where N = B x C, B is the total number of elements in
the batch and C' are the dimensions of the features, s and ¢
represent the student and teacher embeddings, respectively.

The hint loss is integrated into the ConvNeXt model loss
using a weighting, defined by «, to determine the contribu-
tion from categorical cross-entropy loss from the model out-
put and the hint loss from features supervised by the teacher.
Our loss function is described by Equation (2):

Lo = - Leg + (1 — @) - Ling 2

Where Lcg is the categorical cross-entropy loss. In our
experiments, we set « equal to 0.5, assuming that classifi-
cation and hint learning are equally important for our task.

3.2. Training

All non-KD models are trained using categorical cross-
entropy loss only. Each model is trained using an NVIDIA
A100 GPU with the following hyperparameters: the learn-
ing rate, p, is set to le — 3, a weight decay of le — 5
is applied, the mini-batch size is 64 and the AdamW op-
timiser is used [19]. Following [14], we also deploy a
MixRes strategy to augment the GBIF source-domain im-
ages only. For MixRes, given an image, it has a 25%
chance to be down-scaled to a size of 75x75 pixels or a
25% chance to be downscaled to 150x150 pixels. Further
augmentations are applied to all images though PyTorch
RandAugment function, with the num_ops variable set
to 2 and the magnitude set to 3, each image is also 50%
likely to be horizontally flipped. All images are then resized
to the model input size (224x224).

4. Results

For each dataset and architecture, we train for 10 epochs and
report top-1 classification accuracy on the target and source
test sets in Table 1. Figure 3 shows target-domain accuracy;
source-domain accuracy is discussed separately below.
BioCLIP2 consistently achieves the highest accuracy
across all target-mix levels, particularly under low target
supervision, with an average gain of 2.1% over the range
1-50% target data. ConvNeXt, ConvNeXt+KD, and Bio-
CLIP show larger relative improvements with additional
target data (average gains of 18.8%, 16.8%, and 9.1%, re-
spectively). ConvNeXt and ConvNeXt+KD perform poorly
with minimal target supervision but match or exceed Bio-
CLIP with more target supervision. Knowledge distillation



ConvNeXt-tiny
(28M Params.)

ConvNeXt-tiny+KD
(28M Params.)

BioCLIP
(86M Params.)

BioCLIP2
(304M Params.)

Target-domain  Top-1 acc. Top-1acc. Top-1acc. Top-1acc. Top-1acc. Top-1acc. Top-1acc. Top-1 acc.

Mix (target) (source) (target) (source) (target) (source) (target) (source)
(%) (%) (%) (%) (%) (%) (%) (%) (%)
0% 59.4 88.1 64.7 91.2 71.2 95.2 88.3 97.6
1% 60.4 86.9 63.0 90.4 74.4 95.1 87.4 98.3
5% 72.8 87.1 79.4 90.9 76.6 95.0 89.4 98.4
10% 77.7 87.6 81.0 90.6 78.0 95.1 91.5 98.5
20% 83.0 87.9 85.0 90.8 81.1 95.0 90.0 98.0
25% 82.5 87.1 86.6 91.0 82.3 94.9 91.5 98.0
33% 85.9 88.1 86.4 89.9 83.9 95.1 91.3 98.0
50% 85.4 84.5 89.4 88.8 85.8 94.4 91.6 97.8

Table 1. Showing top 1 source and target accuracy (acc.) percentages for each model architecture at each level of target-domain supervision.
Model parameter counts (params) in millions (M) are also shown on the top row, beneath architecture names.

Model Accuracies vs Target-Domain Training Data Mix

— -
W v

Models
ConvNeXt-tiny
ConvNeXt-tiny+KD

—+— BioCLIP
—— BioCLIP2

Top-1 target-domain accuracy

10 20 30 40
Target-domain training data mix (%)

Figure 3. Top-1 target-domain accuracy plotted over training
target-domain mix percentages for each architecture.

provides a consistent boost across all target-mix levels, av-
eraging +3.6% over ConvNeXt.

Across most settings, source-domain accuracy remains
higher than target for all models. For BioCLIP2, source
accuracy is largely stable across target-mix levels. For the
ConvNeXt variants and BioCLIP, there is a slight downward
trend as more target data is included, reflecting the reduced
amount of source-domain data in the mixed training set.
The largest drop occurs at the 50% mix. At this point, Con-
vNeXt and ConvNeXt+KD are the only cases where target
accuracy marginally surpasses source accuracy.

5. Discussion

BioCLIP2 consistently achieves the highest performance,
underscoring its strong generalisation capabilities and ro-
bustness to domain shift. This can be attributed to its pre-
training on a very large and diverse image corpus, which
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likely exposed the model to a wide range of morphological
traits, lighting conditions, and poses. Therefore, we rec-
ommend BioCLIP2 as a model with high transferability to
AMI images. BioCLIP, while weaker overall, performs sur-
prisingly well in low target-supervision settings, suggesting
that its pre-trained features are also highly transferable to
our target domain, but less so than BioCLIP2.

Even modest target supervision of 5% significantly
boosts target accuracy across all models, with particularly
large gains of 13.4% for ConvNeXt and 14.7% for Con-
vNeXt+KD. The addition of KD from BioCLIP2 further
enhances performance, suggesting it helps ConvNeXt learn
deeper, target-relevant features beyond what target supervi-
sion provides. ConvNeXt+KD achieved the best accuracy
per parameter, making it more suitable for compute-limited
settings. Notably, at 50% target supervision, it matched
BioCLIP2’s performance without target supervision, de-
spite having 10 times fewer parameters (28M vs. 304M).

Overall, we provide two insights: (1) when the require-
ment for lightweight models is most important, we recom-
mend KD and train-time domain mixing as effective strate-
gies to build performant models; (2) in scenarios where am-
ple computing power is available and/or target domain data
are especially limited, we advocate using BioCLIP2 and
saving precious expert-labelled data for model evaluation.

6. Conclusion

Through our experiments, we arrive at new directions for
in-situ moth classification under domain shift. We show
foundation models as accurate, adaptable classifiers and de-
velop methods to exploit BioCLIP2 for training lightweight
models. These advances are critical for the development of
insect camera traps, which are a vital tool for understanding
global insect declines.



7. Acknowledgements

This article is based upon work from a short-term scien-
tific mission (STSM) through the COST Action InsectAl,
CA22129, supported by COST (European Cooperation in
Science and Technology). This work was also funded via
a doctoral training grant awarded as part of the UKRI Al
Centre for Doctoral Training in Environmental Intelligence
(UKRI grant number EP/S022074/1).

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

Gbif home page, 2025. 1

Yinon M. Bar-On, Rob Phillips, and Ron Milo. The biomass
distribution on earth. Proceedings of the National Academy
of Sciences, 115(25):6506-6511, 2018. 1

Kim Bjerge, Henrik Karstoft, and Toke T. Hgye. Towards
edge processing of images from insect camera traps. Remote
Sensing in Ecology and Conservation. 1,2

Kim Bjerge, Jakob Bonde Nielsen, Martin Videbzk Sep-
strup, Flemming Helsing-Nielsen, and Toke Thomas Hgye.
An automated light trap to monitor moths (lepidoptera) using
computer vision-based tracking and deep learning. Sensors,
21(2),2021. 1

Kim Bjerge, Jamie Alison, Mads Dyrmann, Carsten Eie
Frigaard, Hjalte M. R. Mann, and Toke Thomas Hgye. Accu-
rate detection and identification of insects from camera trap
images with deep learning. PLOS Sustainability and Trans-
formation, 2(3):1-18, 2023. 1

Kim Bjerge, Carsten Eie Frigaard, and Henrik Karstoft. Ob-
ject detection of small insects in time-lapse camera record-
ings. Sensors, 23(16), 2023. 1

Kim Bjerge, Quentin Geissmann, Jamie Alison, Hjalte M.R.
Mann, Toke T. Hgye, Mads Dyrmann, and Henrik Karstoft.
Hierarchical classification of insects with multitask learning
and anomaly detection. Ecological Informatics, 77:102278,
2023. 1

Kevin F. A. Darras, Marcel Balle, Wenxiu Xu, Yang Yan,
Vincent G. Zakka, Manuel Toledo-Hernandez, Dong Sheng,
Wei Lin, Boyu Zhang, Zhenzhong Lan, Li Fupeng, and
Thomas C. Wanger. Eyes on nature: Embedded vision cam-
eras for terrestrial biodiversity monitoring. Methods in Ecol-
ogy and Evolution, 15(12):2262-2275, 2024. 1

Michael S Engel, Luis M P Cerfaco, Gimo M Daniel,
Pablo M Dellapé, Ivan Lobl, Milen Marinov, Roberto E
Reis, Mark T Young, Alain Dubois, Ishan Agarwal, Pablo
Lehmann A., Mabel Alvarado, Nadir Alvarez, Franco An-
dreone, Katyuscia Araujo-Vieira, John S Ascher, Délio
Baéta, Diego Baldo, Suzana A Bandeira, Phillip Bar-
den, Diego A Barrasso, Leila Bendifallah, Flavio A Bock-
mann, Wolfgang Béhme, Art Borkent, Carlos R F Branddo,
Stephen D Busack, Seth M Bybee, Alan Channing, Stylianos
Chatzimanolis, Maarten J M Christenhusz, Jorge V Crisci,
Guillermo D’elia, Luis M Da Costa, Steven R Davis, Car-
los Alberto S De Lucena, Thierry Deuve, Sara Fernan-
des Elizalde, Julidn Faivovich, Harith Farooq, Adam W Fer-
guson, Spartaco Gippoliti, Francisco M P Gongalves, Vic-
tor H Gonzalez, Eli Greenbaum, Ismael A Hinojosa-Diaz,

5114

[10]

(11]

(12]

[13]

(14]

[15]

[16]

(171

(18]

Ivan Ineich, Jianping Jiang, Sih Kahono, Adriano B Kury,
Paulo H F Lucinda, John D Lynch, Valéry Malécot, Mari-
ana P Marques, John W M Marris, Ryan C Mckellar, Luis F
Mendes, Silvio S Nihei, Kanto Nishikawa, Annemarie Ohler,
Victor G D Orrico, Hidetoshi Ota, Jorge Paiva, Diogo Par-
rinha, Olivier S G Pauwels, Martin O Pereyra, Lueji B Pes-
tana, Paulo D P Pinheiro, Lorenzo Prendini, Jakub Prokop,
Claus Rasmussen, Mark-Oliver Rodel, Miguel Trefaut Ro-
drigues, Sara M Rodriguez, Hearty Salatnaya, [ris Sampaio,
Alba Sanchez-Garcia, Mohamed A Shebl, Bruna S San-
tos, Ménica M Solérzano-Kraemer, Ana C A Sousa, Pavel
Stoev, Pablo Teta, Jean-Frangois Trape, Carmen Van-Dinem
Dos Santos, Karthikeyan Vasudevan, Cor J Vink, Gernot Vo-
gel, Philipp Wagner, Torsten Wappler, Jessica L Ware, Sonja
Wedmann, and Chifundera Kusamba Zacharie. The taxo-
nomic impediment: a shortage of taxonomists, not the lack
of technical approaches. Zoological Journal of the Linnean
Society, 193(2):381-387, 2021. 1

Ross J. Gardiner, Sareh Rowlands, and Benno I. Simmons.
Towards scalable insect monitoring: Ultra-lightweight cnns
as on-device triggers for insect camera traps. Methods in
Ecology and Evolution. 1

Zeming Gong, Austin T. Wang, Xiaoliang Huo, Joakim B.
Haurum, Scott C. Lowe, Graham W. Taylor, and Angel X.
Chang. Clibd: Bridging vision and genomics for biodiversity
monitoring at scale. arXiv preprint, 2025. 2

Jianyang Gu, Samuel Stevens, Elizabeth G. Campolongo,
Matthew J. Thompson, Net Zhang, Jiaman Wu, et al. Bioclip
2: Emergent properties from scaling hierarchical contrastive
learning. arXiv preprint, 2025. 2

Toke T. Hgye, Johanna Arje, Kim Bjerge, Oskar L. P.
Hansen, Alexandros losifidis, Florian Leese, Hjalte M. R.
Mann, Kristian Meissner, Claus Melvad, and Jenni Raito-
harju. Deep learning and computer vision will transform en-
tomology. Proceedings of the National Academy of Sciences,
118(2):e2002545117, 2021. 1

Aditya Jain, Fagner Cunha, Michael James Bunsen, Juan Se-
bastidn Canas, Léonard Pasi, Nathan Pinoy, Flemming Hels-
ing, JoAnne Russo, Marc Botham, Michael Sabourin, et al.
Insect identification in the wild: The ami dataset. In
European Conference on Computer Vision, pages 55-73.
Springer, 2024. 1,2, 3

Jiangtao Li, Yuwei Su, Zhaojun Cui, Jida Tian, and Huiling
Zhou. A method to establish a synthetic image dataset of
stored-product insects for insect detection. /IEEE Access, 10:
70269-70278, 2022. 1

Yuang Liu, Wei Zhang, Jun Wang, and Jianyong Wang.
Data-free knowledge transfer: A survey. CoRR,
abs/2112.15278, 2021. 2

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 11976-11986,
2022. 2

John E. Losey and Mace Vaughan. The economic value of

ecological services provided by insects. BioScience, 56(4):
311-323,2006. 1



[19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101,2017. 3
Graham A. Montgomery, Michael W. Belitz, Rob P. Gural-
nick, and Morgan W. Tingley. Standards and best practices
for monitoring and benchmarking insects. Frontiers in Ecol-
ogy and Evolution, 8, 2021. 1, 2

Amir Moslemi, Anna Briskina, Zubeka Dang, and Jason Li.
A survey on knowledge distillation: Recent advancements.
Machine Learning with Applications, 18:100605, 2024. 2, 3
Hoang-Quan Nguyen, Thanh-Dat Truong, Xuan Bac
Nguyen, Ashley Dowling, Xin Li, and Khoa Luu. Insect-
foundation: A foundation model and large-scale 1m dataset
for visual insect understanding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024. 2

Rita Pucci, Vincent J. Kalkman, and Dan Stowell. Perfor-
mance of computer vision algorithms for fine-grained clas-
sification using crowdsourced insect images. /ET Computer
Vision, 19(1):¢70006, 2025. 1

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748-8763. PmLR, 2021. 2

Miklas Riechmann, Ross Gardiner, Kai Waddington, Ryan
Rueger, Frederic Fol Leymarie, and Stefan Rueger. Motion
vectors and deep neural networks for video camera traps.
Ecological Informatics, 69:101657, 2022. 1

D.B.Roy, J. Alison, T. A. August, M. Bélisle, K. Bjerge, J. J.
Bowden, M. J. Bunsen, F. Cunha, Q. Geissmann, K. Gold-
mann, A. Gomez-Segura, A. Jain, C. Huijbers, M. Larrivée,
J. L. Lawson, H. M. Mann, M. J. Mazerolle, K. P. McFarland,
L. Pasi, S. Peters, N. Pinoy, D. Rolnick, G. L. Skinner, O. T.
Strickson, A. Svenning, S. Teagle, and T. T. Hgye. Towards
a standardized framework for ai-assisted, image-based moni-
toring of nocturnal insects. Philosophical Transactions of the
Royal Society B: Biological Sciences, 379(1904):20230108,
2024. 1

Maximilian Sittinger, Johannes Uhler, Maximilian Pink, and
Annette Herz. Insect detect: An open-source diy camera trap
for automated insect monitoring. PLOS ONE, 19(4):1-28,
2024. 1

Samuel Stevens, Jiaman Wu, Matthew J. Thompson, Eliza-
beth G. Campolongo, Chan Hee Song, David E. Carlyn, et al.
Bioclip: A vision foundation model for the tree of life. arXiv
preprint, 2023. 2

Nigel E. Stork. How many species of insects and other ter-
restrial arthropods are there on earth? Annual Review of
Entomology, 63(Volume 63, 2018):31-45, 2018. 1

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and
Serge Belongie. The inaturalist species classification and de-
tection dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8769-8778,
2018. 2

Roel van Klink, Diana E. Bowler, Konstantin B. Gongal-
sky, Ann B. Swengel, Alessandro Gentile, and Jonathan M.

5115

(32]

(33]

(34]

[35]

Chase. Meta-analysis reveals declines in terrestrial but in-
creases in freshwater insect abundances. Science, 368(6489):
417-420, 2020. 1

Jiff Vyskocil and Lukas Picek. Towards zero-shot camera
trap image categorization. In European Conference on Com-
puter Vision, pages 37-53. Springer, 2025. 2

David L. Wagner, Eliza M. Grames, Matthew L. Forister,
May R. Berenbaum, and David Stopak. Insect decline in
the anthropocene: Death by a thousand cuts. Proceedings
of the National Academy of Sciences, 118(2):€2023989118,
2021. 1

Mei Wang and Weihong Deng. Deep visual domain adapta-
tion: A survey. Neurocomputing, 312:135-153, 2018. 1
Chih-Hsuan Yang, Benjamin Feuer, Zaki Jubery, Zi K. Deng,
Andre Nakkab, Md Zahid Hasan, et al. Biotrove: A large
curated image dataset enabling ai for biodiversity. arXiv
preprint, 2024. 2



