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Abstract

Labelling images of Lepidoptera (moths) from automated
camera systems is vital for understanding insect declines.
However, accurate species identification is challenging due
to domain shifts between curated images and noisy field im-
agery. We propose a lightweight classification approach,
combining limited expert-labelled field data with knowledge
distillation from the high-performance BioCLIP2 founda-
tion model into a ConvNeXt-tiny architecture. Experiments
on 101 Danish moth species from AMI camera systems
demonstrate that BioCLIP2 substantially outperforms other
methods and that our distilled lightweight model achieves
comparable accuracy with significantly reduced computa-
tional cost. These insights offer practical guidelines for
the development of efficient insect monitoring systems and
bridging domain gaps for fine-grained classification.

1. Introduction

Insects are vital to terrestrial ecosystems and global agricul-

ture [18]. They constitute roughly half of all animal species

[29], and terrestrial arthropods collectively account for 20

times the biomass of all wild mammals and birds combined

[2]. Despite their importance, insect populations are declin-

ing worldwide [31, 33], this remains poorly understood due

to a lack of scalable field monitoring methods [20].

In response, automated insect camera traps [4, 10, 27]

autonomously photograph insects in-situ, enabling long-

term and resource-efficient population monitoring [26].

But, the resulting raw imagery must be processed before it

can provide actionable ecological insights. Advances in de-

tection [5, 6] and classification [7, 23] have made computer

vision the leading approach for this task [13].

Species-level recognition from camera-trap images re-

mains difficult: morphological differences are subtle and

expert taxonomists are scarce [9], making annotation ex-

pensive. Citizen science repositories such as the Global

Biodiversity Information Facility (GBIF) [1] provide la-

belled images for many taxa and are popular sources of

training data. However, domain shift (differences in pose,

lighting, and image quality between GBIF and automated

camera trap imagery) reduces performance when models

are trained exclusively on “source-domain” GBIF images

and evaluated on “target-domain” in-situ insects [14].

In addition, developing lightweight computer vision

models for insect monitoring remains important because:

(1) ecologists worldwide may lack the computing infras-

tructure to run large models efficiently; (2) lightweight

models are easier to retrain, which is valuable as most in-

sect species remain undiscovered [29] and new species must

be integrated; (3) lightweight architectures facilitate ‘edge’

computing directly on camera trap hardware in remote en-

vironments. This is common in insect camera trap designs

[3, 8, 26] where on-device inference is critical when con-

nectivity constraints prohibit remote inference. Edge infer-

ence also allows the detection of specific species of interest

on the device, allowing for the removal of unwanted images,

conserving storage space for long deployments [10, 25].

We develop and evaluate a lightweight architecture that

addresses domain shift through two strategies: (1) integrat-

ing expert-labelled target-domain data into training, and

(2) guiding learning via knowledge distillation (KD) from

large-scale pretrained foundation models. We evaluate on

fine-grained and domain-shifted dataset of moth images

from Automated Monitoring of Insects (AMI) cameras [14]

deployed around 12 sites in Denmark. Combining expert-

labelled target-domain data and KD enables our lightweight

model to achieve comparable performance to BioCLIP and

BioCLIP2, despite significantly lower parameter count. We

provide recommendations for ecologists to use foundation

models for their applications, and for the computer vision

community towards fine-grained domain adaptation.

1.1. Related Work
There are many established methods for domain adaptation

[34], including feature alignment, adversarial learning and

self-training. Synthetic data generation [15] has also pre-

viously been shown to improve generalisation for insect
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Figure 1. Data processing pipeline showing how moth images from AMI (target-domain) and GBIF (source-domain) are curated, labelled

at the species level, and split into training and test sets. Controlled mixing of domains enables analysis of domain shift effects. Example

images illustrate differences between the two domains.

images. Here, we explore domain adaptation through su-

pervised mixing of the training set as it is straightforward

to implement and understand and allows us to leverage the

limited expert-labelled target data available in our scenario.

The use of CLIP-style [24] foundation models offers

another route to cross-domain generalisation, pre-training

large-scale representations transferable to diverse target do-

mains. For biological images, recent models such as Insect-

Foundation [22], CLiBD [11] and Biotrove [35] have shown

strong performance on fine-grained insect identification

tasks. Notably, BioCLIP [28], trained on the TreeOfLife-

10M dataset, and its successor BioCLIP2 [12], scaled to 214

million mostly GBIF-sourced images, achieve state-of-the-

art accuracy. To retain the broad domain knowledge of such

models while adapting to specific target tasks, we use KD,

training smaller student model is to match the features of a

larger pre-trained teacher [21]. In this context, KD serves

as a domain adaptation strategy, transferring generalisable

representations from teacher to student [16].

Our work is related to [14], which introduced the AMI

dataset and demonstrated ConvNeXt [17] performance on

cross-domain insect classification. We benchmark founda-

tion models using a balanced dataset of Danish moth species

and explore specialist model training with limited domain-

specific data. Foundation models have also been used for

camera trap classification; [32] applied pre-trained mod-

els for zero-shot vertebrate identification, showing strong

adaptability. We extend this by evaluating BioCLIP2 on

AMI insect images, assessing the impact of expert-labelled

target data and knowledge distillation for smaller models.

2. Dataset
We used a dataset of images of moths species collected

from 12 AMI systems deployed in three regions of Den-

mark across three years (2022-2024) [3]. Images captured

by AMI are high resolution photographs of a large white

screen, where moths are attracted to a UV light. Moths

themselves make up small portions of each image and pre-

existing object detection methods give crops for each moth

instance [20]. Crops can be highly variable in size, lighting

and quality, Figure 1 shows some examples. And, follow-

ing the long-tailed distribution typical of ecological scenar-

ios, there are typically many images of the most common

species, and relatively few of the others [30]. Identifiable

moths in the AMI images have been labelled to the species

level by one of the authors, an expert insect taxonomist spe-

cialised in moth species identification. As a primary focus

in this study is domain shift, for our experiments, we use

a subset of AMI moth crops represented by 101 species,

where each species is represented by 110 AMI images, to

isolate and study domain-shift effects. We refer to these

throughout as the “target-domain” examples.

Individual images in the target-domain can be highly cor-

related, as data are obtained by time-lapse, and frequently

an individual is stationary for long periods and is therefore

imaged repeatedly in the same position. To prevent leak-

age of highly correlated images from the training set into

our test set, we use an unsupervised deep clustering method

to split the train/test set for each class (see Supplementary

Section 8). Of the 110 images per class, a test set of 10 is

withheld, leaving 100 per class for training.
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To leverage GBIF images, we download each directly

using an automated toolkit, supplying the GBIF species ID

for each AMI class and filtering for the ‘imago’ or adult

life-stage, matching AMI imagery. For each class, we ob-

tained 224 images from unique GBIF occurrences, forming

the “source-domain” dataset. These are randomly split into

184 training and 20 withheld test images per class.

We progressively increase the proportion of target-

domain images in training. At each step, we include as

many GBIF images as possible to maximise training size.

Once all available target images are used (over 35%), fur-

ther increases in the target proportion require reducing

GBIF images. We constructed eight training sets with

target-domain contributions of 0%, 1%, 5%, 10%, 20%,

25%, 33%, and 50% (statistics in Supplementary Section 9).

3. Methodology
We train four models for moth species classification across

domain-mixed datasets. To benchmark BioCLIP and Bio-

CLIP2, we train linear classifiers on their frozen vision

encoder outputs (as shown in Figure 2). We also train

a partially fine-tuned ConvNeXt-tiny model, unfreezing

its classification head and top two layers, initialised with

ImageNet-1K weights; this setup was found to perform

best empirically. Finally, we apply KD from BioCLIP2

to ConvNeXt-tiny to improve generalisation through richer

feature representations.

ConvNeXt-Tiny

BIOCLIP/2 Transformer (frozen)

Feature Layers Classification 
Block

TrainableFrozen

Linear layer 
(trainable)

MSE (knowledge 
distillation loss) 

Figure 2. Foundation vision encoders (top) with a trainable classi-

fication linear layer. ConvNeXt instance (bottom) with pre-trained

feature layers 1-6 frozen, the final feature layer is used for the

mean-squared error (MSE) distillation loss for ConvNeXt+KD.

3.1. Knowledge Distillation
We use feature-based KD [21], where the student network

aims to match the learned feature representations from the

teacher to its own internal embeddings. Specifically, we im-

plement a ‘hint’ loss, defined as the mean squared error be-

tween the final feature representation of ConvNeXt and the

output embedding of BioCLIP2, defined by Equation (1):

Lhint =
1

N

N∑

i=1

(si − ti)
2

(1)

Where N = B×C, B is the total number of elements in

the batch and C are the dimensions of the features, s and t
represent the student and teacher embeddings, respectively.

The hint loss is integrated into the ConvNeXt model loss

using a weighting, defined by α, to determine the contribu-

tion from categorical cross-entropy loss from the model out-

put and the hint loss from features supervised by the teacher.

Our loss function is described by Equation (2):

Ltotal = α · LCE + (1− α) · Lhint (2)

Where LCE is the categorical cross-entropy loss. In our

experiments, we set α equal to 0.5, assuming that classifi-

cation and hint learning are equally important for our task.

3.2. Training
All non-KD models are trained using categorical cross-

entropy loss only. Each model is trained using an NVIDIA

A100 GPU with the following hyperparameters: the learn-

ing rate, μ, is set to 1e − 3, a weight decay of 1e − 5
is applied, the mini-batch size is 64 and the AdamW op-

timiser is used [19]. Following [14], we also deploy a

MixRes strategy to augment the GBIF source-domain im-

ages only. For MixRes, given an image, it has a 25%

chance to be down-scaled to a size of 75x75 pixels or a

25% chance to be downscaled to 150x150 pixels. Further

augmentations are applied to all images though PyTorch

RandAugment function, with the num_ops variable set

to 2 and the magnitude set to 3, each image is also 50%

likely to be horizontally flipped. All images are then resized

to the model input size (224x224).

4. Results
For each dataset and architecture, we train for 10 epochs and

report top-1 classification accuracy on the target and source

test sets in Table 1. Figure 3 shows target-domain accuracy;

source-domain accuracy is discussed separately below.

BioCLIP2 consistently achieves the highest accuracy

across all target-mix levels, particularly under low target

supervision, with an average gain of 2.1% over the range

1–50% target data. ConvNeXt, ConvNeXt+KD, and Bio-

CLIP show larger relative improvements with additional

target data (average gains of 18.8%, 16.8%, and 9.1%, re-

spectively). ConvNeXt and ConvNeXt+KD perform poorly

with minimal target supervision but match or exceed Bio-

CLIP with more target supervision. Knowledge distillation
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ConvNeXt-tiny

(28M Params.)

ConvNeXt-tiny+KD

(28M Params.)

BioCLIP

(86M Params.)

BioCLIP2

(304M Params.)

Target-domain

Mix

(%)

Top-1 acc.

(target)

(%)

Top-1 acc.

(source)

(%)

Top-1 acc.

(target)

(%)

Top-1 acc.

(source)

(%)

Top-1 acc.

(target)

(%)

Top-1 acc.

(source)

(%)

Top-1 acc.

(target)

(%)

Top-1 acc.

(source)

(%)

0% 59.4 88.1 64.7 91.2 71.2 95.2 88.3 97.6

1% 60.4 86.9 63.0 90.4 74.4 95.1 87.4 98.3

5% 72.8 87.1 79.4 90.9 76.6 95.0 89.4 98.4

10% 77.7 87.6 81.0 90.6 78.0 95.1 91.5 98.5

20% 83.0 87.9 85.0 90.8 81.1 95.0 90.0 98.0

25% 82.5 87.1 86.6 91.0 82.3 94.9 91.5 98.0

33% 85.9 88.1 86.4 89.9 83.9 95.1 91.3 98.0

50% 85.4 84.5 89.4 88.8 85.8 94.4 91.6 97.8

Table 1. Showing top 1 source and target accuracy (acc.) percentages for each model architecture at each level of target-domain supervision.

Model parameter counts (params) in millions (M) are also shown on the top row, beneath architecture names.

Figure 3. Top-1 target-domain accuracy plotted over training

target-domain mix percentages for each architecture.

provides a consistent boost across all target-mix levels, av-

eraging +3.6% over ConvNeXt.

Across most settings, source-domain accuracy remains

higher than target for all models. For BioCLIP2, source

accuracy is largely stable across target-mix levels. For the

ConvNeXt variants and BioCLIP, there is a slight downward

trend as more target data is included, reflecting the reduced

amount of source-domain data in the mixed training set.

The largest drop occurs at the 50% mix. At this point, Con-

vNeXt and ConvNeXt+KD are the only cases where target

accuracy marginally surpasses source accuracy.

5. Discussion
BioCLIP2 consistently achieves the highest performance,

underscoring its strong generalisation capabilities and ro-

bustness to domain shift. This can be attributed to its pre-

training on a very large and diverse image corpus, which

likely exposed the model to a wide range of morphological

traits, lighting conditions, and poses. Therefore, we rec-

ommend BioCLIP2 as a model with high transferability to

AMI images. BioCLIP, while weaker overall, performs sur-

prisingly well in low target-supervision settings, suggesting

that its pre-trained features are also highly transferable to

our target domain, but less so than BioCLIP2.

Even modest target supervision of 5% significantly

boosts target accuracy across all models, with particularly

large gains of 13.4% for ConvNeXt and 14.7% for Con-

vNeXt+KD. The addition of KD from BioCLIP2 further

enhances performance, suggesting it helps ConvNeXt learn

deeper, target-relevant features beyond what target supervi-

sion provides. ConvNeXt+KD achieved the best accuracy

per parameter, making it more suitable for compute-limited

settings. Notably, at 50% target supervision, it matched

BioCLIP2’s performance without target supervision, de-

spite having 10 times fewer parameters (28M vs. 304M).

Overall, we provide two insights: (1) when the require-

ment for lightweight models is most important, we recom-

mend KD and train-time domain mixing as effective strate-

gies to build performant models; (2) in scenarios where am-

ple computing power is available and/or target domain data

are especially limited, we advocate using BioCLIP2 and

saving precious expert-labelled data for model evaluation.

6. Conclusion

Through our experiments, we arrive at new directions for

in-situ moth classification under domain shift. We show

foundation models as accurate, adaptable classifiers and de-

velop methods to exploit BioCLIP2 for training lightweight

models. These advances are critical for the development of

insect camera traps, which are a vital tool for understanding

global insect declines.
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